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Spin-coefficients and null tetrad components of the Ricci tensor and the Weyl conform tensor are
evaluated in terms of a single complex gravitational potential €, while null tetrad components of the
electromagnetic stress energy tensor are evaluated in terms of a second complex potential &, All the
results are expressed elegantly in terms of a differential operator &, similar to the “thop” of Newman
and Penrose. The problem of finding physically pertinent stationary axially symmetric
Einstein-Maxwell fields is reduced to the search for a complex solution £(x, y) of one nonlinear

differential equation subject to simple subsidiary conditions.

. INTRODUCTION

Our objective is the systematic description of those
space-times which may be regarded as representing the
gravitational fields of bounded uniformly rotating axially
symmetric sources. Until recently the only known exact
solution of Einstein's field equations having these attri-
butes was the Kerr metric.l However, Tomimatsu and
Sato, using this author's complex potential formalism,
have now discovered new exact solutions which belong
to the class in which we are interested.?

In the complex potential formulation of the axial sym-
metry problem one seeks a solution of the nonlinear
differential equation

(Eoko™ — V2, = 2£,*VEy " Vi, (1)

where V is the gradient operator and vZ2 is the three-
dimensional Laplacian operator.3 Instead of the canoni-
cal (p, z) coordinates of Weyl we use prolate spheroidal
coordinates (x, y) defined by

p=[(2— D(1 —y2)]2,

Then the basic field equation (1) assumes the highly
symmetrical form
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The fairly obvious solution
£Eo = x cosx — iy sina (4)

may be used to generate the Kerr metric (or indeed the
charged Kerr metric), while the less obvious solution

%% cos2\ + y2 sin2A — 2ixy(x2 — y2) cosA sinA — 1
2¢(x2 — 1) cosh — 24y(1 — y2) sinx (
5)

gives rise to the simplest of the new metrics published
by Tomimatsu and Sato.

£ =

We have utilized the same complex potential (5) to gene-
rate a new solution of the coupled Einstein-Maxwell
equations, corresponding to a uniformly rotating axially
symmetric charged source.¢ All of the basic equations
which we employed in our analysis will be written in
terms of a covariant differential operator “thop” simi-
lar (but not identical) to that introduced by Newman and
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Penrose in another context.5 This simplifies immensely
the task of generating from the complex potential the
metric tensor components, the spin coefficients, and the
Weyl tensor components, when a coordinate system other
than the Weyl canonical coordinate system is employed.

It is hoped that the availability of this concise formalism
will encourage others to pursue the quest for physically
pertinent solutions of the basic field equation (3). In
particular, it is certain that there exist other rational
functions §,(x,y) which satisfy this field equation.

1. NULL TETRAD FORMALISM

As in so many other applications of general relativity, a
null tetrad formalism is advantageous in dealing with
problems involving stationary axially symmetric fields.
The symbols &, m, t, and #* will denote two real and two
complex null vector fields, among which the only non-
vanishing inner products areé

Em=tT=1. ®

The corresponding differential forms will be denoted by
the symbols k,m, t and t*, while the non-vanishing inner
products will be

Erm=trtr=1. )

A basis for 2-forms can be constructed by forming ex-
terior products of the basic 1-forms. In particular, we
shall employ the basic 2~-forms

B,=kt, By=km +tt*, and B_=mit*, (8)
all of which correspond to the same eigenvalue of the
duality operator. (The symbol A, which is so often used
in connection with exterior calculus, will be suppressed
between differential forms).

The 1-forms defined by

u=dk \m+dt1*, wv=dkt, andw=dm 1t*
©)

are evaluated in practice by solving the equations

dB, =B u— By, (10a)

dB, = 2B ,w — 2B_v, (10b)
and

dB_ = Byw — B_u. (10c)

A knowledge of u, v, and w is important both for con-
siderations of the eéquations of motion and for proceed-
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ing to the Riemann tensor. The twelve complex Newman-
Penrose “spin-coefficients” are obtained from u, v, and
w by projecting these 1-forms onto the basic 1-forms
k,m,t, and t*. For example, the spin coefficient common-
ly called the “shear” is given by
v,=t T o=t de 1t =1kt ily. (11)
The Weyl conform tensor may be characterized com-
pletely in terms of five complex fields ¢; (i = — 2, .
+ 2), where the index denotes the “spin-weight” of the
field,7 while the Ricci tensor may be characterized
completely in terms of the Ricci scalar R and the null
tetrad components of the “reduced Ricci tensor”
S,,=R,,—1&,,R. (12)
In practice, all of these fields may be evaluated by ob-
serving that

dv +vu=c,yB. +cBy + (cy + R/12)B,

+3S,B*+35,B,*+35,,B,* (13a)
du — 2wv = — 2[cB_+ (cy — R/24)B, + c_,B,
+ %Skt*B—* + %Stt*BO - %smrB+*], (13b)
dw —wu = (cq + R/12)B_ + c_1By -+ c_,B,
+ 2S,44B.* — 38, xBo* + 35,..B,% (13c)

where S,, = kS, Y, etc.

I, STATIONARY AXIALLY SYMMETRIC SPACE-
TIMES

In the case of a stationary axially symmetric space-
time under a wide variety of circumstances coordinates
p,z,¢,and T may be introduced so that the 1-forms

ol = f"l/ZP-ldp’
03 = f-l/ZRd(p’

02 = f-1/2p-14z,

04 = f12(dT — wde) (a4)

constitute an orthonormal tetrad system.® Here f, w, P,
and R are real functions of p and z only. Our null tetrad
system will in turn be defined by
t = (1/V2)(o! + io2),
k= (1/92)(03 — 0¥),

t* = (1/V2)(ol — i02),

15
m = (1/V2)(03 + 04). (19
A fairly simple calculation involving Eqs. (10) yields six
nonvanishing spin coefficients, which we here express
in manifestly covariant form:?

u, =~ (1/¥2)fV2 5 (InP) — (1/2V2)f-V/2G,,  (16a)
u = (1/¥2)f1/25% (InP) + (1/2V2)f-1/2G_, (16b)
vy=— (1/2V2)fV2R-13R + (1/2V2)f-V/2G,,  (16¢c)
v, =— (1/2V2)f1/2R-18R, (16d)
w, = — (1/2V2)f1/2R-15*R, (16e)
= — (1/2V2)fV2R-15%R + (1/2V2)f-V/2G_. (16f)
The quantities
G, = df — R 1f 2w,
(17)

G_ = o*f + R-1f2b%w
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have, respectively, spin weight plus one and minus one.
The operators 8 and d* are defined as follows for a
field n of spin weight s:

on = Pl-sy(Psy), 0*n= Pl+sy*(P-sp), (18)
where (in the p-z coordinate system)
2 0
= +
v = 3P T 5" (19)

The operators § and d* raise and lower spin weight by
one, respectively.

Utilizing Eq. (13), one may show that in our case

Spe = Spx =5, = Spx =0, (20)
while the algebraically independent nonvanishing com-
ponents of the Ricci tensor are given by the following

manifestly covariant expressions.

R13*BR = 3 f-L(R — 4S,,4), (21a)
BG_ — B*G, = 2(Sp— S,um)s (21b)
3 f[R-13*(RG,) + R-10(RG.)] — G,G
= 3f[R— 45,4 — 2(S, + S,.,0),  (21c)
R-13dR + $ f~2G,G_* = 2f-1S,,, (214d)
%3 (InP) — 3 f-2(G,G,* + G_G_*%
=—4f 1[R + 48,0 —2(S,, + S,,)] (21e)

The last equation is, however, derivable from the others
by virtue of the Bianchi identities:

We also find that

c,=¢1=0, (22)
while the nonvanishing components of the Weyl conform
tensor are given by the following manifestly covariant
expressions:

Co— 38, =— §[20G, + £-1G2], (23a)

co + R/12—4(S,, + S,,,)
=— [ 0*G, — 0G_+ f-1G,G.], (23b)
C_p— 3 Spspx = — 5[20%G_ + f-1G2]. (23c)

For an axially symmetric stationary space-time des-
cribed by Eq.(14), only three Petrov types are possible:

(1) Degenerate type N—here only ¢, or c_, (but not
both) are nonvanishing. This case is not particularly
interesting if you seek fields which are asymptotically
Schwarzschild.
(2) Degenerate type D—here either:
(a) only ¢, is nonvanishing, or
(b) c5c_p = 9c. The Kerr metric has this form
of conform tensor when our null tetrad system
is employed.
(3) Algebraically general space-times—the new
Tomimatsu-Sato solution falls in this class. Hope-
fully, in the future more thought will be given to the
refined classification of algebraically general space-
times. .

Equations '(17), (21), and (23) may be written directly in
terms of the prolate spheroidal coordinates defined by
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the transformation (2). It suffices to note that in this
system of units the differential operator v becomes

V:Jx2—1-§7+iw/1—y2:—y, (24)
while the line element assumes the form

dx? dy?
ds? = f-1|p-2(_2~_ 4 D"\ ; p2ge2
d [ <x2—1 1—y2> ¢]

— f(dT — wd¢)2. (25)
IV. COMPLEX POTENTIAL DESCRIPTION OF

ELECTROVAC FIELDS

In those regions of space-time where the stress-energy
is purely electromagnetic, one has

R=0 and S, =81T,, (26)
where

T,, = 1/4n[FoF,, + 18,,(FBF )], (27)
and the electromagnetic field tensor F,, is given in
terms of the 4-potential A by

F,oo=9 4 9 4 (28)

BV gxw TV gxv

Our attention will be directed toward static fields for
which A, = A, = 0 and for which A, and A, are func-
tions of p and z alone. In this case it is advantageous to
introduce a magnetic scalar potential A; such that
R-1(84,; + wdA,) = if ~18A;. (29)
In fact, the electromagnetic field tensor and the stress-

energy tensor may be expressed entirely in terms of the
complex potential

& = Ay + iAS. (30)

In particular, the nonvanishing null tetrad components of
the reduced Ricci tensor are given by

Spp=— (03)(8*®¥), (31a)
Spm =— (0*3)(80%), (31b)
Sy = (09)(88%) = (Spuye)*. (31c)

A “duality rotation” corresponds to a transformation
& — eiod under which the stress tensor and the gravita-
tional field remain unchanged.

In view of the vanishing of R — 45,4, Eq. (21a) implies
that R(p, z) is a harmonic function of p and z. As a re-
sult one may introduce the Weyl canonical coordinate
system in which R = p. The fact that little progress
has been made in the analysis of stationary axially
symmetric interior solutions may be attributed to the
nonvanishing of the right side of Eq. (21a) when matter
is present.

Equation (21b) implies the existence of a complex scalar
potential € such that

G, = Be + 20*d®, G_= d*e + 20*d*d. (32)
Equation (21c), which may be cast into the form
flp~18(pd*¢) + p-18*(pBe)] =

G, b%e¢ + G B¢, (33a)
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assumes with the Maxwell field equation

flp~18(pd*®) + p~19*(pdd)] = G, d*® + G_b@, (33b)
the role of principal field equation in the complex poten-
tial formalism. The remaining gravitational field equa-
tion (21d), which in the present case assumes the form

p-1odp + 3 f~2G,G_* = 2f ~1(6%)(3%*), (34)

may be employed in order to evaluate P (which appears
in the definition of “thop”) once Eqs. (33) have been
solved for € and ©. Finally, comparing Egs. (17) and
(32), we find that f and w may be evaluated using the
equations

f = Ree + &*, (35a)

— p 1f20w = ib (Ime) + B*dd — dB*. (35b)

V. UTILITY OF THE ¢, POTENTIAL

As suggested in Paper II, we may consider electrovac
fields for which € is an analytic function of ¢. In this
case we may write both € and & in terms of a new com-
plex potential ¢ such that

e=(—1/(¢+1) and &=gq/(t+1), (36)
where ¢ is a constant, which we may temporarily regard
as real, since the electromagnetic fields appropriate for
complex values of ¢ may be obtained later by a duality
rotation.

The principal field equation (33) may now be written

(Eo*Eo — D)[p~10*(pBt,) + p10(pd*Ey)]
= 4£,*(BE0)(B*Ep),  (37)
where

£=£y(1— g2)V2. (38)

Since Eq. (37) makes no reference to g, we have reduced
the electrovac problem to the vacuum problem.

We should now like to discuss certain general features
of the {, potential and of the prolate spheroidal coordi-
nate system, which make them particularly appropriate
for the study of stationary axially symmetric fields.

The Schwarzschild solution corresponds to £, = x; so
does the Reissner-Nordstrom solution. Since we wish
to center our attention upon solutions of Einstein's field
equations which are asymptotically Schwarzschild, we
shall demand that, for large values of x, £, should be-
have as some real constant times x.

Equation (37), when expressed in terms of prolate
spheroidal coordinates, assumes the form (3). It should
be observed that if ¢,(x,y) is a solution of Eq. (3), then
new solutions can be constructed by combinations of the
following procedures:

(1) complex conjugation,
(2) replacement of ¢, by its reciprocal,
(3) multiplication by a constant number of
modulus 1, (39)
(4) substitution of x - — x,
(5) substitution of y =»—y,
(6) interchanging x and y.

Of course, these procedures can be expected to yield
physically uninteresting solution most of the time. In
order to select physically interesting solutions with a
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plane of symmetry orthogonal to the axis of symmetry,
we propose that the following additional requirements
be imposed upon ¢,:

Eol=%,9) = — Eo* (X, ), (40a)

Eolx,— ) =+ £*(x,y). (40b)
The field equation (34) may be replaceé by

p10%p + [2/(£ok0* — 1)2](3E0)(B¢0*) = O, (41)

which implies immediately that the metric function P
does not depend upon the choice of g. Once one has
evaluated it for the vacuum field, one-may carry it over
for the charged version of the field.

The metric function

f=(Eoko* — D?/1Ey + (1 — g2)-1/2]2 (42)
is easily evaluated, so we need only consider the evalua-
tion of the w field.

If the field £,(x,y) satisfies the condition (40a), then
from Eq. (35b) it may be shown that

(1— g2 V2 Even(w) = 3[(1 — g2)V/2

+ (1— ¢g2)-V2] Even(w,), (43a)

(1 — ¢?)1/2 0dd(w) = Odd(w,), (43b)
where “Even” and “0Odd” refer to the parts of the func-
tion which are even and odd in x, respectively. Thus,
once w, has been constructed for the vacuum field, w
may be inferred immediately for the electrovac field.
The function w, is, however, governed by the differential
equation

p W, = [(£g + 1)20E0* — (£0* + 1)20¢0)/ (Eoko* — 1)2.
(44)
VI. CONCLUSIONS

While the study of stationary axially symmetric fields
remains considerably more difficult than the study of
static axially symmetric fields initiated by H. Weyl in
1917, the complex potential formalism has at least iso-
lated certain key aspects of the problem from the com-
plexities of the four-dimensional space-time. One does
not even have to understand relativity theory in order
to attack the problem of finding new solutions of Eq. (3).

It is clear that an infinity of solutions remain to be dis-
covered. If one introduces a new complex potential Y
such that

£o = — cothy, (45)
then this field satisfies the equation
vy = 2 tan(2 Imy)vy * VY, (46)

where we have reverted to the notation employed in the
Introduction. In the static case this reduces to Laplace's
equation, so that the general solution can be found easily.
In our case Eq. (46) provides a convenient vehicle for

the application of approximation techniques.

For fields satisfying conditions (40) we infer that
11/(— x’y) = ’J/*(x,y),
‘p(x’_y) =+ ’P*(x,y)~

(47a)
(47b)
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The solutions of Eq. (46) having these attributes may be
constructed explicitly to any desired order in 1/x. Thus,
one finds

W(x;y) =—x1 %
k=0 1

X

A Qe Py (y)(&x~1)%, (48)

n

where the real constants @,, are arbifrary and the real
constants @,, for I <k are determined once Q, @11, ---
@, are specified. In particular, Q,, = 0 if 2 — [ is odd.
The free parameters @,, play a role similar to multi-
pole moments in Newtonian gravitation theory.

A “gold ring” should be earned by the person who does
for complex ¢ what is so simple for real Y ; namely,
construct the general solution of Eq. (46). While this
prize may continue to be ellusive, because of the absence
of a linear superposition principle, a “silver ring”
might be merited for the discovery of the general rela-
tion between the values of the constants @, ,, which
govern the asymptotic structure of the field, and some-
thing more directly associated with the structure of the
source. What immediately comes to mind is the in-
finite red shift surface, upon which { £,/ = 1. One might
consider the shape of the infinite red shift surface, and
the phase of ¢, thereon, as descriptive of the structure
of the source. The objective of this approach would be
to relate this structure to the values of the parameters
Q.- In this manner perhaps one could circumvent the
necessity of having exact solutions of the vacuum field
equations.

In the meanwhile we hope that more people will be en-
couraged to search for specific exact solutions, a task
which Tomimatsu and Sato have shown is not quite im-
possible. The next “bronze ring” should be awarded
for the discovery of an exact solutiqn outside the Tomi-
matsu-Sato class.
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We consider the set of C*¥ bounded tensor fields of type (r,s) on R in the topology of uniform C*
convergence. For each k£ > 2, the map sending a metric to its curvature tensor is shown to be analytic
at the Minkowski metric. The same is true of the map sending a metric to its Einstein tensor. The
well-known linearized theory of gravitation amounts to studying the directional derivatives of these
maps. An iterative method for solving the full field equations along an analytic curve of Einstein

tensors passing through zero is proposed.

I. INTRODUCTION

A central problem in the general theory of relativity
concerns the stability of solutions to Einstein's field
equations. Precisely, given a four-manifold M, a stress—
energy tensor T, and an exact solution g to the field
equations E(g) = — 7, the problem is to determine all
“nearby” solutions and to examine, at least qualitatively,
their physical properties. (E(g) = {Rab — éRgal,}dxfz ®
dx? is the Einstein tensor of the metric g. The map

g - E(g) is called the Einstein map.) There are essen-
tially two approaches to the problem, depending on what
one means by the word “nearby.”

(a) In the first instance, one considers all metrics g’
which are in some sense close to g, computes the
energy-momentum tensors — E(g’), and examines the
physical properties of the resulting space~times (M, g’).
One normally requires the introduction of a topology on
the set of Lorentz metrics in order to determine whether
or not two metrics are close to one another.

(b) In the second instance, one perturbs the energy—
momentum tensor 7 to a nearby 7’ and attempts to
solve the resulting field equations E(g’) = — T".

In connection with (a) if one regards all Lorentz metrics
on M as being on an equal (mathematical footing, it
appears! that the only acceptable choice for a topology
is the Whitney fine C* topology. However, it frequently
happens that one is nof concerned with all such metrics,
but only those g’ which are in some sense close to a
fixed metric g. In such cases, it is possible to construct
a topology which is considerably more tractable than
the Whitney topology and at the same time appears to
provide a suitable analytic framework within which to
attack problem (b).

In this paper, we examine such a topology in the particu-
lar case where M = R4 and the preferred metric is a
fixed Minkowski metric 7. Section II introduces the
necessary mathematical formalism; the set of Lorentz
metrics close to 7 is shown to be an open subset of a
Banach space. In Sec. Il we show that the curvature
map (the map associating with each Lorentz metric its
Riemann tensor) is analytic in a neighborhood of 7.

[The metrics themselves need only be C* (¢ = 2).| It
follows immediately that the Einstein map g — E(g) is
analytic at . In Sec. IV we briefly discuss the linearized
theory of gravitation, which is particularly well-posed

in this formalism: The linearized Einstein tensor of

the metric 7 + k is simply the derivative of E at 7 in
the direction of 2. In Sec.V we discuss an iterative
procedure for solving the full field equations along an
analytic curve of stress—energy tensors passing through
zZero.

tl. MATHEMATICAL PRELIMINARIES

Fix, once and for all, a global coordinate system (x¢) on
R4 and the Minkowski metric 1 defined by these co-
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ordinates, n,, = diag{l, —1,—1,—1}. Let §, denote the
set of C* twice-covariant symmetric tensor fields on
R4, and for k € §,, ¥ € R4, put

Ol = max _ (9, ),

L —C 1) W
and set

|11, = sup{lR(x)l,: x € R4}, -
Define

®,={res,:[nl,<oh 3)

The [-| , horm is easily seen to be equivalent to the
standard C* norm;this particular formulation is slightly
easier to calculate with, ®, is a Banach space. Simi-
larly, let U, denote the set of four-covariant C * tensor
fields on R4 having the symmetries of curvature ten-
sors (R 11 ca1 = Ropear Rofoea; = 0). For R € U, de-
fine |R[, as above and let

W, ={R € V,:|R|, <=}, (4)
‘W, is a Banach space as well. Notice that n € ®,and
that the ball of radius 1/4 about 7 consists entirely of
Lorentz metrics; it is these which we shall call “close”
to 1. Thus we are concerned with an open ball in a
Banach space. {Notice that the complete set of Lorentz
metrics contained in &, is not an open set; for example,
[1/(1 +»2)In[r2 = 25,(x2)2] is not an interior point.
This would be a real problem if we were interested in
all Lorentz metrics.}

11i. ANALYTICITY OF THE CURVATURE MAP

Let Q@ be the map sending a nondegenerate C* metric
to its C*-2 curvature tensor. As mentioned above, the
domain of £ contains an open ball around 7 in B,

Theorem: For any k = 2,the map Q: B, - W, , is
analytic at n. Precisely, for any g in the ball of radius
1/4 about 7, write g = 0 + h where (2|, < 1/4;then

Qg) = +h) =M@ + il ]i, D) G, ..., k),
7= .
j times, (5)

where, as usual,

d

Djﬂ(n)'(hy “-’h) (_i?;

_a
a

{Rppcan + t1hy +-

tyzeeemt,=0

j
hy=to=hj=h

k) dxe ® dxb ® dx°® dxdl.
(6)

Copyright © 1974 American Institute of Physics 1413
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The series on the right converges in norm in the space
W, g

Proof: We exhibit the power series for Q{n + k) and
show that it converges to Q(n + %). It is necessary to
work in components; all raising and lowering of indices
is done with n and the summation convention is em-
ployed throughout. We have g = 7 + k, where |h|, =
a < 1/4. By long division, the components of the mverse
matrix to g are

g4 =n?—n? + 5 (- 1Y, e by 2 )
ji=1 J

This is a series of real~valued functions on R4; we need
to show uniform C# convergence. Put b =4a < 1,and
differentiate the series n times (0 = » =< k). One finds
without difficulty that, for any x € R4,
|k, 2, 5 h,.j“),alaz s ()< G+ el (8)
Since 2%, (j + 1)1l < ior b < 1 (ratio test), all the
series for g, .. .,g%,a * a, converge uniformly and
absolutely on R4 (Wexerstrass test); and in the notation
of Sec. 1l we have

g, <lIntl, +25 (j +1)kbirt
i=0
o0
=1+ (j + 1)< w,
ji=0

So g-1 is well defined.

Let g (g) be the Christoffel symbols of g with respect
to (x¢). Setting Hy, = ${hy o + By o — o a}> We have
Ig (g) = N, — hodH,, + hohil, ~+ -+ (9)

with absolute and uniform C#-1 convergence. Thus
Q(g) = Ry, (g)dxe ® dx® ® dx° ® dx4, where

Ruoi(8) = 2H,y 0 4+ 2H, T51,(8), (10)
and we may expand and regroup in the following way:

R,ql8) = 2H, 10 a1t 2H,g Hip1gqM% — 2Hyg( Hgiay6R%

+ 2Has[cHleld]bh8ihie_ ] (11)
where we have convergence in the space W, _,, with
Has[cHIald]b - 2( Hedb HasdHeco)'

Remark: Because of the absolute and uniform con-
vergence, it follows that the series for Ric(g) =

R, 8 1%%dx? ® dx® = R ,dx* ® dx® and R(g) = R, g%

are also convergent. From this it follows immediately
that the map E: B, - B, _, sending a Lorentz metric
to its Einstein tensor is also analytic at 1 in the ball
of radius 1/4. Similar remarks apply to the map send-
ing a Lorentz metric to its conformal curvature tensor.

IV. THE LINEARIZED THEORY OF GRAVITATION

The best-known method for obtaining approximate solu-
tions to the field equations is called the linearized
theory (see Pirani, Ref. 2, for a fairly complete exposi-
tion and references). It has often been remarked that it
is not a particularly good method, and in this gection we
shall see precisely why this is so. The linearized

i Math Phus Vol 15 No. 9. September 1874

1414

theory proceeds roughly as follows. An energy-momen-~
tum tensor T is given; instead of solving the full equa-
tions E{(g) = — T, one replaces E by a linear operator

L and considers the simpler equations L(g) = — 7.

L{g) is defined simply by writing g = 7 + &, calculating
E(n + k), and retaining only those terms which are first
order in k. The resulting linear system is then solved
for h, and one obtains the approximate solution g = n+h.

Of course, if one now calculates the full Einstein tensor
E(n + k) for this metric, it will not be equal to — T,
However, there is a fairly obvious relation between the
two quantities, namely

DEm)h=—T. (12)

This should be evident from the remarks in the pre-
ceeding section; DE(n) £ is just the first term in the
power series expansion of E(n + ). In words, the
linearized Einstein tensor is the derivative of the Ein~
stein map at 7 in the direction of %2, Similarly, the first
term DX(5)* % in the series (5) or (11) is just the usual
linearized curvature tensor of the metric n + h.

Once it is recast in this formalism, the shortcomings
of the linearized theory are readily apparent. The
relationship between 1 + k and an exact solution to
E(g) = — T is essentially nonexistent, What we have
instead is

En+h)+T= Z} D"E(n) R (13)

a real solution (if it exists) to E(g) = — T is well
approximated by the linearized solution only in the

case that the entire power series on the right can be
neglected,

V. AN ITERATIVE METHOD FOR SOLVING THE
FIELD EQUATIONS

Consider a curve of the form
(14)

where, for the sake of definiteness, | h |, < ($)#1. Then

for ¢t € {(~1, 1), this defines an analytxc curve of metrics
passing through n and lying in the ball of radius 1/4
about 7 in B,. The image of this curve under the Ein-
stein map will be an analytic curve passing through 0
in @, _,. Setting

H(t) = §'°3

i=1

_.f"“

we have
E(g(f)) = DE(n)- H(t) + (1/21) D2E(n)-(H(¢), H(t))
+ (1/31) D3E@m) (H($), H(t), H{)) + - -, (15)

Expanding and regrouping according to powers of {, we
have

E(gt)) = {DBE@)( b )}t + {DE@X )

I
- . 2/21
+ D2E()( by hIHE2/2!

I
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+1DE h + 3D2E h h + D3E
{DEM)( ) 3 (n)( ) (n)((ilz) My (ilt))}
\m
X £3/31 4 «en, (16)
Now conversely, suppose we are given an analytic curve
() = Z) T
i=1 (9)

of stress~energy tensors with 7(0) = 0. Then we can
try to find a solution curve of the form (14). According
to (16),the equations to be solved are then (in order)

: DE(n)- =— T, f

1 (n) ((q)) dy or (}i‘)’

O: DEm(h ) =— — D2E , y
() ((2)) (g) D (")((;{)’ (’f)) for <}z‘)
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, =— T —3D2Em) h, h
II: DE(m)( k) 58D Wk, k)

— D3

D3Em)(h) k) k), for k.

+veete. ()

It should be noted that at each stage of the iteration
process, one has only to solve a linear equation, which
is, in principle, possible.

'D. Lerner, Comm. Math. Phys. (to be published).

’F. A. E. Pirani, in Lectures on General Relativity, 1964 Brandeis
Summer Institute in Theoretical Physics, Vol. 1 (Prentice-Hall,
Englewood Cliffs, N. J., 1965).
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Asymptotic simplicity is shown to be k-stable (k > 3) at any Minkowski metric on R* in both the
Whitney fine Ck topology and a coarser topology (in which the C* twice-convariant symmetric
tensors form a Banach manifold whose connected components consist of tensor field asymptotic

to one another at null infinity). This result, together with a sequential method for solving the field
equations previously proposed by the authors, allows a fairly straightforward proof that a well-known
result in the linearized theory holds in the full nonlinear theory as well: There are no nontrivial (i.e.,
non-Minkowskian) asymptotically simple vacuum metrics on R* whose conformal curvature tensors

result from prescribing zero initial data on past null infinity.

I. INTRODUCTION

The concept of asymptotically simple space—time mani-
folds, introduced by Penrose, 12 is a fruitful one in the
study of asymptotic conditions in general relativity and
one which Penrose has used to good advantage.® One
would like to have more examples of asymptotically
simple space~times than the single example now known,
namely Minkowski space—time. In this paper it is shown
that there are many asymptotically simple space-times;
in fact, there is an open neighborhood of any Minkowski
metric on R? in the Whitney fine C* topology (¢ = 3) on
the set of Lorentz metrics on R4 all of whose elements
are asymptotically simple metrics. Using this result and
a formulation for weak gravitational fields developed by
the authors,4 we show that a certain linearized solution
to the vacuum field equations has an exact counterpart
in the full nonlinear theory. Section II deals with de-
finitions and preliminaries; Sec. III gives a proof of the
asserted result for asymptotically simple space-times;
Sec. IV extends the known linear result to the full theory;
and Sec. V gives some concluding remarks and conjec-
tures.

Il. MATHEMATICAL PRELIMINARIES

A space-time manifold is a pair (M, g) where M is a
four-dimensional C« differentiable manifold and g is a
C3 pseudo-Riemanian metric on M of signature -2 which
is time-oriented and possesses no closed timelike C1
curves. A space—~time manifold (M, g) is said to be
asymptotically simple if there exists a space-time mani-
fold (3, g) with boundary whose interior is conformal

to (M, g) with & = Q2g, Q > 0, which satisfies:

(1)  is a c* differentiable manifold with boundary §
and g is a C3 pseudo-Riemannian metric on e,

(2) QisC3onM,Q=0o0ndgandd2 = 0 on g

(3) Every maximally extended null geodesic in the in-
terior of M2 intersects gin precisely two points.!

Minkowski space~time (R4, 7) is an example of an asymp-
totically simple space—time. The manifold (71, 7) whose
interior is conformal to (R4, 7) is obtained by construct-
ing the conformally-compactified Minkowski space—
timeS.® and then slicing this manifold apart along the
light cone at infinity. The result is represented pic-
torially in Fig. 1. The points I+, /9, and /- are not points
of 4.

An exposition on the Whitney topologies applied to pro-
blems in general relativity is given by Lerner,? and
only a brief summary will be given here. Given an ar-
bitrary Riemannian metric g on a differentiable mani-
fold M, a W, (Whitney fine C°) neighborhood base of a
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CO tensor field ¢ € I'°(T7% (M)} is given by sets of the
form

W, (t, €(x)) = {s|s € T(T%(M))
and |s — ¢ () < e(x),V x& M}

Here €(x) is any positive continuous function on M and
| “(x) is the p norm in T7M,. A W, (Whitney fine C%)
neighborhood base (¢ = 0) of a tensors field t € T'*
(T%(M)) is given by sets of the form

Wk, €(x) ={sls e T'¥Tz(M)) and ||s — t, (%) < €(x),

Io(s — Ol (1) < ex), ..., [IVE(s — O, (%) <elx),¥ x € M}
where Vi denotes the totally symmetrized /th covariant
derivative with respect to the Riemannian metric u.
This gives a convenient description of the W* topologies
(the Whitney fine C* topologies); an altogether equivalent
formulation, which ig manifestly independent of 1 and
perhaps more physically intuitive as well, is given in
Ref. 7.

The set of all C* Lorentz metrics (pseudo-Riemannian
metric tensor fields of signature -2) on M will be de-
noted by L¥M). A property P on I'*(T%(M)) is said to

be k-stable at a tensor ¢ € I'¥(T7(M)) if there exists an
open W* neighborhood of ¢ all the elements of which
possess property P. For example, geodesic complete-
ness is k-stable, 2 = 2, on L*(M) as is time orientability.
The purpose of Sec. III is to prove that asymptotic sim-
plicity is k-stable,k = 3,at nin L%,

Another topology is used on L *(R4) in Sec. IV which
was introduced by Lerner and Porter.4 Given n and a
Minkowski coordinate systems {x‘} on R4 in which n =
ds? = (dx0)2 — (dx1)? — (dx2)2 — (dx3)2,for any t €
T*(T7(R4)) set

It , = {1t 1,

It;;;,'(x)l,...,It;;;,..k.(x)|}

max
components

Copyright © 1974 American Institute of Physics 1416
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where t -+ (x) stands for the components of ¢ in {x%} and
denotes coordinate derivatives with respect to {xi}.
Let

[t] = sup{llt()l,| x € R4}

Define
BE,T'S) = {t S F”(T’;)I t |k< 00}.

Then (B{*-s?,|+|,) is a Banach space; the topology is
equivalent to that of uniform C* convergence.

Given a particular Minkowski metric n on R4 and the
conformal factor £ mentioned in the definition of
asymptotic simplicity, one can define the set of tensor
fields of type (r, s) asymptotic to zevro at null infinity:

Afr.s) = {t € B{7-9): Q2 extends to a C* tensor

field on M with 22t = 0 on 4}.

[The conformal factor (22) used in the definition of
Afr:s) for certain applications may be changed to another
power of Q. The factor Q2 is the correct one to use for
metrics asymptotic to 7 in B€0.2).] A(r.s) is a closed
subspace of B{7's) and thus a Banach space in its own
right. The set I"’(T'(R‘l) is made into a Banach mani-
fold by taking the sets

{U,=a+Afr): ac THT7(RY))}

for an (analytic) atlas. Two tensor fields a,8 ¢
F’*’(T:(R‘l)) lie in the same connected component in this
topology iff @ — B3 is asymptotic to zero at null infinity.
The fields @ and 8 are then said to be asymptotic at
infinity. This topology is called the A * topology on
tensor fields. It is clear that the W* topology is finer
than the A * topology (any open set in the A * topology is
open in the W* topology as well).

Il. STABILITY AND ASYMPTOTIC SIMPLICITY

Theovem 1: Asymptotic simplicity is a k-stable
property, £ = 3,in L ¥(R%) at any Minkowski metric 1 on
R%,

Proof: It is necessary to exhibit an open W# neigh-
borhood, 2 = 3, of n in L*(R%), the Lorentz metrics in
which are all asymptotically simple. First, there
exists an open W* neighborhood U, in IVI — 9of 71,all the
Lorentz metrics in which are equal to 7 on 4. Since
M — 4 is differomorphic to R4 by virtue of the conformal
relatedness, an open W* neighborhood U; of n in R* is
obtained. All the Lorentz metrics in U; are asymptotic
to the Minkowski metric 7, The Lorentz metrics in U,
satisfy the first two defining properties of asymptotic
simplicity (using the same M and  as for (R4, n) and
defining g = Q2g for g ¢ U,).

The third defining property of asymptotic simplicity
states that null geodesics are complete and that, intui-
tively, they reach “infinity””. This is certainly true for
Minkowski space and an open W* neighborhood of n must
be exhibited, all the Lorentz metrics in which exhibit
this feature. To this end, it is noted that the spray of n
is certainly complete and that the completeness of a
vector field is a stable property.7 [The spray of a me-
tric g on M is the map sp: TM — TTM defined locally

as sending (p,v,) - (p,v,, T(p)w,,v,)) where
T(p) is the connectmn of g af p. The spray of a metric
is a second-order differential equation on M and its
curves give the geodesics of g. Geodesic completeness
of g means that the vector field sp(g) is complete.] Thus
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there exists a W1 neighborhood of the spray of 7 in

T »-1(TTM) all the vector fields in which are complete.
As the map sending a Lorentz metric to its spray is
continuous, there exists an open neighborhood U, of 7,
all the metrics in which are geodesically complete.
Let U3 = Ul n Uz.

If a Minkowski coordinate system {t = x0, x1, x2, x3} is
chosen for 1, so that ds2 = dt2 — (dx1)2 — (dx2)2 —
(dx3)2, then any null geodesic in (R4, n) has the property
that it crosses each of the ¢ = const hypersurfaces.
Thus the null spray of 7 [in these coordinates (xi, v%) -
(xi, vi,v’, 0) where n; v’vJ 0] is transverse to the hy-
persurfaces { o 7 = const where 7 is the projection
associated with the tangent bundle, TR4. This trans-
versal property is stable and so there exists a W* open
neighborhood U, of n containing only metrics whose
null sprays are transverse to the hypersurfaces t o7 =
const. Let U = Uz N Uy. The metrics in U satisfy the
properties (1) and (2) of asymptotically simplicity, and
have complete null sprays transverse to each t o 7 =
constant hypersurface. The claim is that the metrics
will also satisfy property (3). Null geodesics (maxi-
mally extended) for a metric g in U cross each t =
const hypersurface. Since null geodesics are confor-
mally invariant, the image of a null geodesic of (R4, g)
under the conformal map is a null geodesic of (17, 2).
Thus a null geodesic (maximally extended) of (M, g)
can only fail to have two points on 9 if it contains I,
19, or I". See Fig.2. But this is impossible as the past
light cone of I+ is g+, the light cone of IV is 9, and the
future light cone of I- is 9-. Thus, for example, the only
null geodesics in (M, £) containing /+ are those that

lie on 9+ and no null geodesic from # — 9 can contain
I*+. Thus, we have an open W#* neighborhood U of 7 in
L(R%) containing only asymptotically simple space—
times.

So there are many asymptotically simple space-times
based in R4; in particular, ones which are not confor-
mally flat.

A slightly stronger version of Theorem 1 can be proved,

Theorvem 1': Asymptotic simplicity is stable at 7 in
the A* topology on the set B, of C* Lorentz metrics
which are asymptotic to 7.

The A* topology is coarser than the W* topology and the
additional asymptotic condition is essential. The proof
proceeds similarly to that above, with one making cer-

tain that at each step the W* open sets can be replaced

with A* open sets all the elements in which are asymp-
totic to 7.

IV. CURVES OF LORENTZ METRICS

Given a curve in L*(R4), # = 2, of Lorentz metrics at
7,&: t = g(t) such that g(0) = 7, the induced curve of
Riemann tensors is denoted by Q: ¢ — Riem(g(¢)) €
T#Z(TYR4), the induced curve of Ricci tensors is de-~
noted by Ric: ¢ — Ricci(g(t)) € I'*2(TJR4%), and the in-

I Y
4
IR t = constant
— r
t= constant

FIG. 2
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duced curve of conformal tensors is denoted by Co:

t - conf. (g(t)) € T#2(T3(R?)). I g is in B2 for 7
and Minkowski coordinate system {xi}, then the three
induced curves , Ric, and Co have images in B4,
B{%?, and B{9*4), respectively.4 If, in addition, g is
analytic at 7, then the induced curves are all analytic
at zero in the respective spaces.

On the other hand, if an analytic curve is given at 0 in
B{9%?, the question arises as to whether there exists

an analytic curve in B£0.2) of Lorentz metrics at 7
which induces the given curve in B{%-2) as its curve of
Ricci tensors. This, in general, will not be the case;
when it is true one can solve the field equations in ge-
neral relativity by solving sequentially a set of linear
partial differential equations. The difficulties are with
respect to boundedness of the terms and convergence of
the resulting sequence. An additional freedom in the
resulting curve is fixed by appropriate initial conditions
for g. This additional freedom is a useful adjunct in
trying to find such an analytic curve of Lorentz metrics.

Theorem 2: Let t— g(t) € BS%2) (k = 3) be an
analytic curve of vacuum metrics (Ric(g(?)) = 0, all
t) on R* with g(0) = n. Suppose that

(a) for all ¢,g(¢t) is asymptotic to 7,

(b) for each ¢, the conformal curvature tensor of g(¢)
results from zero initial data on 9- in the confor~
mally related (M, 7).

Then g(t) is a curve of Minkowski metrics.

Proof: Given a curve of Lorentz metrics analytic
at n,g: t > g(t), the analyticity at  requires that

o ti
gty=n+2 h —.

i=1 (i) 7!
The requirement that the curve be asymptotic to n is
that the curve

o0 ti
i=1 (i) i!

by asg'mptotic to zero. Tensor fields of any given type
in B, .) asymptotic to zero form a Banach space.

There is an open interval about zero for which the
curve g has its image in the set of asymptotically
simple metrics on R4 as guaranteed by Theorem 1’;

let ¢ be restricted to such an interval. The solution of
the equations for the Ricci tensor and conformal tensor
for this curve then proceeds sequentially. Since the
corresponding maps Ric and Co are analytic at 7, the
corresponding curves are completely determined by
their derivatives for { = 0. The zeroth derivative gives
conditions automatically satisfied since Minkowski
space—~time has zero Ricci tensor and zero conformal
tensor. The first derivative of the curve of Ricci tensors
at £ = 0 simply gives the vanishing of the linearized
Ricci tensor for 7 + k ¢4y,

nad(}i)ac,bd - nad(l/{)bc,ad - nad(l’i)ad,bc

+ % h =0.
(1)bd,ac

The first derivative of the curve of conformal tensors at
= 0 yields the linearized conformal tensor Cy) 5.4

of 7 + h () which must in the conformally related pic-

ture (M, n) be obtained from zero initial data on the

null Cauchy hypersurface 9-. The linearized conformal
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tensor, C(q) 44, Satisfies the linearized Bianchi iden-
tities n%C (yyabca,e = 0, whose spinor equivalent is
VALY s gep = 0 if ¥ g5 represents Cyy, 4. BY using
the techniques developed by Penrosel for handling such
zero rest-mass field equations in a conformally in-
variant manner, a spinor field ¢,50p = QW , 5¢p i
obtained on (#7, 77) satisfying VA4’¢ ,5.p = 0. Initial data
for ¢ 4z¢p is given on the null Cauchy hypersurface 9,
namely zero data, and the solution at a point p € M of
the initial value problem for the equation VA4, .., =0
can be obtained as a generalized Kirchoff integral over
the intersection of the past light cone of p and the initial
data surface 9-.3 For zero initial data, the resulting
field ¢ 450y 18 zero and thus ¥, 5o, = 0 or equivalently

Cabea = 0.

The fact that the linearized Ricci tensor and the linear-
ized conformal tensor of n + &(;)k are both zero is
equivalent to the vanishing of the linearized Riemann
tensor. This fact is best exploited by using the Cartan
structure equations in their linearized forms for the
determination of 2(;y. The structure equations are

dee + we, A §° =0,
1
dw?, + we, Awt, = 3Re,,

where 8¢ is a basis for cotangent vector fields, w4, is
the connection form whose Riemann curvature form is
Re,. In the frame ¢ = dx? the metric n + & (,) yields
the linearized structure equations with linearized con-
nection w2,

wa, A§d =0, (1)
dw?, = 0. (2)

Equation (2) says that the 1-form w?, = we, dx°
is closed and since the manifold is simply connected,
w?, is exact,

wabc =“ab,c' (3)

Equation (1) then gives u?, ,dx® ~ dx® = 0 or that the
1-form p 2 = p4,dx® is closed. Again, simple connec-
tivity says that y ¢ is exact,

ue, = 0% ,.
b (1),b

and thus

we, = 0%, 4)
be T (¥
The tensor k() ,, is obtained from the linearized equa-
tion for the vanishing of the covariant derivative of
the metric, i.e.,Dg,; .. (], o(h(y) ), resulting in

(5)

h abe = Nga ©

a + Npa0 4@
D @ "

(6] ,ac)

whose solution (absorbing constants of integration into
O(p? is
(1)

13 =g + o (6)
m?® »* o
where
O ,=MN,; 0 4.
(n° ad(l)

The four functions 0(,y, are required to be C* and to be
appropriately bounded in B (00,
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A coordinate transformation x'¢ = x2 + {0 (49 yields the
same curve of metrics which, when expressed in the new
coordinate system, has zero linear term:

T)+0‘t+2 h'—'. (7)
i=2 (i) t:

The next step in the sequential solution is to determine
h'(y from the conditions imposed on the curve of Ricci
terms (namely that it be the constant curve 0) and the
curve of conformal tensors. The resulting equations for
k'’ (g) are exactly those previously solved for 2,y and
the same technique that resulted in Eq. (7) yields a
curve of the form
2 0 i
n+0-t+0-2 4 3 pr L (8)
2! i=3@) i!
Continuing, it is seen that the resulting curve is a curve
of Minkowski metrics as required. For each ¢, the
transformation

exhibits g(¢) in a Minkowski coordinate system.

V. CONCLUSION
The following questions arise:

(1) Is asymptotic simplicity W* stable? Theorem 1
is the proof that this is the case at any Minkowski
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metric on R4, (R%,7n). The proof utilizes some special
properties of Minkowski space and no obvious generali-
zations of the techniques involved exist. Also note that
Theorem 1 gives the stability of weakly asymptotically
simple spaces! at any weakly asymptotically simple
space whose corresponding asymptotically simple space
is in the open W* neighborhood of (R%, n) exhibited in
the theorem.,

(2) 1Is it possible to use the techniques in Sec. IV to
generate nontrivial analytic curves of solutions to pre-
scribed field equations? Considerations of this nature
are to appear in a forthcoming paper by the authors.

(3) Is it possible to obtain conditions under which the
linearized solutions to the field equations actually deter-
mine the behavior of solutions in the full theory? In-
cluded in this might be a formulation of stable properties
in terms of Lyapunov functionals.

'R. Penrose, in Battelle Recontres, 1967 Lectures in Mathematics and
Physics (Benjamin, New York, 1968).

R. Penrose, An analysis of the Structure of Space - Time (Princeton U.
P., Princeton, N. J.,, 1966).

’E. T. Newman and R. Penrose, Proc. R. Soc. A 305, 175 (1968).

“D. Lerner and J.R. Porter, J. Math. Phys. 15, 1413 (1974).

N. H. Kupier, Ann. Math. 50, 916 (1949).

°H. Rudberg, thesis (Uppsula, 1957).

'D. E. Lerner, Comm. Math. Phy. (to be published).
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A three-body potential is introduced for which Schrodinger’s equation of the three-body linear problem

with additional harmonic and inverse cube forces is solved exactly.

1. INTRODUCTION

The three-body linear problem has been solved exactly
for only two distinct potentialst:

V.= i a; 5(x; - x,), (1a)
Vo= 23) [wWP(x; — 2,0 + glx; — 2,2, (1b)

1
Its seems reasonable to assert that this list exhausts all
possibilities of exact solution in terms of two-body
interactions.

Therefore, in order to extend the application of the
three-body linear model, an exact solving three-body
potential might be of interest since, as far as we know,
no example with this potential is available up to date.
The potential to be introduced has the generic form

vii,sz[(xe - X+ (x;- x )12,

where f is a real parameter. It represents the inter-
action between the i—j couple due to the presence of the
third k-body. The potential is reasonable since it de-
pends, in a symmetric way, on the distance of each
particle with respect to the third particle and, further-
more, it tends to zero when the third body approaches
infinity with respect to the other two. Besides, it can
also be understood as a generalization of a two-body
potential, since for k=1¢ or k=j Eq. (2) becomes a two-
body inverse square potential.

(2

We apply the three-body potential to two different
problems for which Schridinger’s equation separates in
a nontrivial way.

The main characteristic of this model is the appear-
ance of anisotropic states for distinguishable particies.
Order and statistics are the other two features of the
solutions to be discussed.

In Sec. II, Schrédinger’s equation of the most general
problem is established and the symmetry properties of
the coordinate system are discussed. In Secs. III and
IV we solve the problem of three equal-mass linear
bodies interacting via three-body plus harmonic and/or
inverse cube forces. Section V is devoted to some gen-
eral remarks and future outlook.

Il. SCHRODINGER’S EQUATION AND COORDINATES

In this section we write Schrédinger’s equation for the
general problem which includes harmonic, inverse cube,
and three-body forces. We start with one-dimensional
cartesian coordinates x;, and then transform the equa-
tion into center-of-mass polar coordinates (7, ¢) for
which separation and exact solution is possible.

We have then (#%2/2m =1)
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3 82 3 _
(- Z=1: 5"_2: " i%gl [-é-wz(xi —xj)2 + 2%, - xj) ]
3
+ 23 Bf[(x;—xp) + (¥, —x)]R - E) (%, %, X3)
£,4, kel i#i#h
=0. (3)
Introducing center-of-mass coordinates
V2u= X1 — X3,
VB v =x, + %, — 2%, (4a)
3R =x, +x, +x,,
s0 that
Hp= %y =3V2 (VBv—u), x,-x,==-3V2(Y3v+u), (4b)
we obtain for (3), after eliminating the R coordinate,
02 92 u? + v%)?
[— Fr ks W (1? + V%) + 9g u——————L”((svz e
(u® + %)
+9f'v—zz—3;2~:32—5§—E W(u,v)=0, (5)

where E is now the energy in the c.m. frame. Finally
we introduce the polar coordinates (7, ¢):

u=7 sing, v=7 cosy, (6)
so that
sin 3¢ = sing(sin’p - 3cos?y) =r3u(u® - 307), 0
€08 3¢ = cosy(cos®y — 3 sinp) = 72 y(v? ~ 3u®)
and Eq. (5) becomes
a2 1 3 02 2 . -2
[—- FPs - ;;—-a—’;:-' - a¢2 + W 'rz+9g‘(’}'51n3qo)
+ 9g(r cos 3¢) - E] (7, ¢)=0. (8)
This equation can be separated (A% is the separation
constant):
22 18, , N )
- —_—— = 9
(ara — 5y T+ —E) (1) =0, (9a)
* 9 of z) -
(— ag® *Sin? 3¢  cos*l3@ N dle)=0. (9b)

Both equations can be solved exactly. By putting f=0
and g=0, one obtains the well-known harmonic oscil-
lator problem. The case where only f=0 was solved by
Calogero. ** In this paper we discuss the solutions ob-
tained for g=0 and f+0 as well as g#0 and f+0. The

7 equation is the same for all cases mentioned above and
its solution is well known. Qnly for the sake of com-
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FIG. 1. p sectors of
order due to inverse
cube forces.

pleteness shall we solve it at this stage. To this end one

makes the ansatz
x(7)=7* exp(cr?) Flar?). (10)

And replacing (10) in (9a), one obtains a confluent hy-
pergeometric equation for F if

a=-2c=uw,

then

b=1}, (11)

F(o;y;wr?)=F[3(122) = E/4w; 1£); 07?],

The physically acceptable solution is obtained by
choosing b positive and by requiring F to be a
(Laguerre) polynomial, that is,
b=1>0, HHl+r)-E/dw=-n,
so that the solution of the 7 equation is
X 7) =7 exp(— swr?) LN w7?)
with

(12)

E=2w2n+x+1), n=0,1,2,. (13)

Next we discuss the very important symmetry pro-
perties of the coordinate system (7, ¢). From (4) and
(6) one obtains

%, =%,=V2 7 sing, %, +%-2x,=V6 7 cosp. (14)
Since the three x, coordinates are collinear, a specific
value of ¢ gives a specific ordering of all three parti-
cles. It can readily be seen from (14) that if the com-
plete ¢ circle is divided into six sectors of 7/3 each,
then to each sector we may attach one and only one or-
der of the three particles (Fig. 1). A given sector will
be called the p sector if all angles ¢ = ¢, belonging to

it can be written ¢, = ¢,+pr/3 for 0 <¢, <7/3.

For identical particles, permutation operators will be
of importance. We shall call P~ an odd permutation op-
erator which interchanges any two indices of an ordered
trio. A product of any two odd permutation operators
gives the even permutation operator P*. Besides, two
configurations of the three particles will be called
“identical configurations” if one can be obtained from the
other by application of either P* or P°. Then, if we call
C(@) a specific configuration associated with a given an-
gle ¢, all six identical configurations generated by the
six operators P* are given by
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PC(@)=C(x ¢ + 2n/37) (15)

for n=0, 1, or 2.

A value of ¢ which will be of interest in our problem
is given by ¢ =(2p + 1)/6m. At these points one has 3v2
¥ sin[(2p + 1)/67]=V6 7 cos[(2p + 1)/6n]. That is, if the
order (i,j, k) corresponds to the p sector, then for ¢,
=(2p + 1)/67, the midcoordinate of the ordered trio
(1,4, &) will be zero (x,=0). Furthermore, for
¢,<(2p+1)/6m, the same coordinate is positive (x,>0)
for even sectors, while it is negative (x,<0) for odd
sectors. Now, in order to distinguish between these two
configurations, we write for the pth configuration (p
even):

(ijk):{iuk) if 9, < $+(2p+1)7 .
(i) if @,> §(2p+ )7

(16)

Figure 3 (Sec. IIIA) shows the 12 sectors of 7/6 each
for which this particular arrangement of particles holds.
Furthermore, we call, for instance, R* the arrangement
i(jk) if (ijk) is an even permutation of (321); but if (ijk)

is an odd permutation of (321), then, for instance,
(ij)e=L".

Ordering plays an important role in our problem since
inverse cube forces do not allow for interpenetration of
particles, so that a given order will be preserved under
the presence of these forces. On the other hand, the
three-body force (2) will be shown to allow for inter-
change of two particles while only the third conserves
order. This particular effect will give rise to the R and
L configurations.

1. HARMONIC AND THREE-BODY FORCES

In this section we solve and discuss Schrédinger’s
equation (3) for g=0. The corresponding 7 equation (9a)
has already been solved, (12); the ¢ equation (9b) of
this problem reads

32
(-7

In order to solve this problem, we introduce the vari-
able z =cos’? 3p. Indeed, the inverse of this transforma-
tion is not unique. But, since solutions will be found for
the range (g —1)/27 <3¢ <(q+ 1)/2m, for each sector so

defined there will be only one value of ¢ for each value
of 2. Substitution of z into (17) gives

[z(l—z):T:-%(% —z)-diz—%(é-%z)] &(z)=0. (18)

If we now put ¢(2)=2°H(z) and require that
a=[1+(1+4g)"/?]

T/ S V) $(9) =0. (17)

cos? 3¢

(19)

we obtain the following hypergeometric equation for
H(z):

[z(l —z)diz: +(-;— +2a-2(1+ 2a)) -‘% +<%)2 - az] H(z)

=0; (20)
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FIG. 2. gq sectors of
polarization due to
three~body forces.

and the complete solution is:

H(z)=A H(a,B;v;2)+Bz"" Hla+1-v, B+1-y; 2—y;2),
(21)

where
a=a-1/6, B=a+1r/6, y=31+2a. (22)

If we now require both {¢|% and ¢¢’ to be continuous,
zero at the boundaries (=0, 1, ) and, in order to avoid
collapsing of the system, g> - 1 (see Ref. 1b), then
since, at z=0, ¢¢  will contain terms like A z%23-!

+ Bz™%%, we should ask B=0 and 2a - 1>0. Therefore,
one must choose the positive sign of (19) and require
£>-3/16. On the other hand, at z=1 the hypergeom-
etric function behaves like (1 - 2)""**#=(1 - z)*/2, and

its derivative like (1 - z)"!/2, which should be continuous.

Therefore, we have to cut the infinite series H by re-
quiring a(or B8) to be a negative integer:

a—%l:—l, for1=0,1,2,..-. (23)

Then we obtain

$(2)=2° H(~ 1,1 + 2a; £+ 2a;2). (24)
And recalling the definition of Gegenbauer polynomials,

G (x)=H(~n, n+s; s+3; 1-2%),

G (X)=xH(-n, n+s+1;n+4 1-23), (25)
we obtain as the physically acceptable solution of (17)

¢ (@)= cos™ 3¢ Gi*(sin 3¢) (26)
for

#Hg-17m <3¢ <i(g+1)m, otherwise zero. (27)

We are ready now to write down the complete solution
of this problem. But, despite the fact that the three
particles are identical, we shall first treat them as if
they were distinguishable, in order to get a better in-
sight into the kinematics of our problem. By doing so
we facilitate the symmetrization procedure, which fol-
lows once we treat the particles, as they are, as in-
distinguishable.

A. Distinguishable particles

We shall show now that, for a given energy E,,, six
degenerate ¥, states are obtained from (26) if we al-
low g to range from 0 to 5.
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Now, each ¢, is different from zero only if ¢ lies in
its respective ¢ sector given by (26a). If we compare
these with the p sectors defined by the coordinates (Sec.
II), we observe that in each ¢ sector only one particle
conserves order while the other two may permute. We
call “free particle” the first one and “bounded pair” the
other two. Furthermore, for ¢=0, 2, and 4 the bounded
pair stays on the right of the free particle while for ¢
=1, 3, and 5 the bounded pair stays on the left of the
free particle. We call these R and L states, respective-
ly. The motivation for all these definitions stems from
the fact that the boundaries of the ¢ sectors coincide
with those values of ¢ for which the midparticle of the
trio lies either on the right (R state) or on the left (L
state) of the center of mass of the other two (see Sec.
II). Certainly, if the particles are distinguishable, each
of these three R and three L states can be distinguished
from one another (Fig. 2). That is, three distinguishable
particles give rise to six distinguishable states, as it
should be. But these six states cannot be generated from
each other by permutation P, since R and L states do
not mix under the action of P. Therefore, there are
still six states missing. These, as we shall see, can be
obtained by permuting the pair of bounded particles. The
whole effect on the wavefunction will be a phase factor
(= 1), In fact, let us consider the R state 3(21). From
Fig. 3 we see that while ¢ stays in the lower sector
(labelled R") the particles arrange according to 3(12).
The identical configuration, with 1—2 permuted, be-
longs to the R* sector, ¢ being changed by — ¢. But
since G;*® sin(- 3¢)=(- 1)} G,*(sin 3¢), we have
P(1,2)¢,,,=(-1)} ¢,,- Are these states physically dif-
ferent ? That is, is it possible by means of an observa~
tion to tell whether we are dealing with 3(21) or 3(12)?
Certainly not, since both configurations are equally
probable for particles in the state 3(21). This, by the
way, is reflected by the fact that both wavefunctions dif-
fer, at most, in sign. That is, although all three parti-
cles are assumed to be distinguishable, our three-body
interaction allows one to distinguish only between states
for which the free particle is different. This is why we
have only three R and three L states.

Finally we are in a condition to write down the six
energy-degenerate wavefunctions which are solutions of
Eq. (8) if g=0 and the particles are distinguishable
[see Eqgs. (12) and (26)]

\I’nlq(r’ ¢) =ana y 8la+l) exp(_ ,%w,rz)Lg(aﬂ) (w,'.Z)

Xcos? 3¢, Gi(sin3¢,), (28)

FIG. 3. Polarization

and order.

(132
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where ¢=0,1,...,5, »,1=0,1,2,...,

(g-1)/6n <@, <(g+1)/6n, a=5[1+(1+4g)""?], g=- &,
and N, is a normalization factor. The corresponding
energy is

E, =2w(2n+6a+20+1). (29)

For g even, ¥, is R-polarized while for ¢ odd it is L-
polarized. Bosons are described by /-even while
fermions by l-odd wavefunctions.

B. Indistinguishable particles

Our next task is to symmetrize all six wavefunctions
given by (28). To this end we make use of the permuta-
tion operator P*, defined by (15), obtaining

P ¢ (0)= ¢+, +2m/3m), (30)

where m =0, 1,2, This result is equivalent to

P o lo)=00,+2m), P ¢ 0)=(-1) ¢, +2m). )
(31

But the state ¢ (¢ ,+ 2m), unless m =0, has not been
defined. Without changing anything in our previous cal-
culations, we may now regard ¢ as a mere parameter
(not a “quantum number of distinguishability” as in Sec.
IIIB) of the argument of only one unique function ¢, so
that ¢ ,= ¢ for all ¢ and ¢’. This is equivalent to re-
quiring N, =N, =N, =Ng and N,;; N, ;3 =N, ;s =N;.
But the relative phase between N, and N, cannot be de-
cided on statistical grounds since permutation does not
mix R and L states, These two are connected by parity
so that N, =N, =N for even parity and N, ==N_,=-N
for odd parity.

We are then left with only one symmetrized state for
each energy E,,, that is,

Vs (@0) =N7 8@ exp(- 3 wr?) L5 P (wr?)

5
X35 () cos® 3(p, + qm/3) G [sin 3(¢, + g /3)], (32)
q=0
where the energy is given by (29), - n/6 <¢, <n/6, and
s=+1 for even parity and (- 1) for odd parity. Bosons
are described by /-even and fermions by I-odd wave-
functions.

Before closing this section we wish to comment on
polarization.

If the simultaneous position of all three particles is
an observable, then an R state can certainly be distin-
guished from an L state. Or, what amounts to the same
thing, if we were able to prepare a specific polarized
state, then due to the singular nature of the three-body
interaction which forbids a particle to cross the center
of mass of the other two, this particular state of polar-
ization would certainly be conserved. Therefore one
would have, instead of one wavefunction for each energy
level (nl), two degenerate states, one for g-even (R
states) and one for g-odd (L states). These states would
not be parity eigenstates. But is the simultaneous posi-
tion an observable ?

The answer to this question is no if the particles are
indistinguishable. In fact, any observable related to
identical particles must be permutation invariant.?
Therefore, for three indistinguishable particles, the
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following are well-defined position operators:
X=x,+%,+x,,
Y= lxl—x2| + |x1'xs| + |x2""‘s"
Z= ‘x1+x2-2x3| + |x1+x3-2x2| + |x2+x3-2x1|.

But a simultaneous measurement of X, ¥, and Z does
not allow one to infer unambiguously the value of all
three coordinates (given a specific order). Although one
may say that for R or L states one could infer precise
values of x, from the knowledge of the position observ-
ables, the converse is not true. This can be seen by
computing Z for a specific order, say (321). Then

| %, + %, — 2%, | is either x, + x, = 2x, Oor 2x, - X, = X;, and
there is no way of deciding between these two values
from the knowledge of ¥ and X alone.

However, the answer to this question would be yes if
one accepted the possibility of polarization destroying
indistinguishability.

1IV. HARMONIC, INVERSE CUBIC AND THREE-
BODY FORCES

This time we may go straight on since the details of
the main operations have already been given in the last
section. We start with Eq. (9b):

a2, _£ f : _
(' ds? ' sin3g * cos™3g -R> &) =0, (33a)
where now

q/21 <3¢ <(q+1)/2m. (33b)

By transforming according to z = sin® 3¢, we obtain

[z(l—z)§+(—;--z) diz'+%<};-§- lj—cz>] ¢(2)=0.
(34)

Now we try ¢(z)=2° (1 - 2)*H(z) and obtain a hypergeom-
etric equation for H:

{z(l - 2) ?dgz—: +[(-;— +2a) —z(1+2a+2b)] diz

A 2
+[(E> —(a+ b)z]} H(Z):O. (35)
if
a=3{1+(1+49)2], b=3[1+(1+49"2], (36)
and H=H(a, B;y;2) for
a=a+b-1/6, B=a+b+)/6, y=2a+3. (37)

Again, for the correct physical solution we must re-
quire @ (or B) to be a negative integer; then H becomes
a Jacobi polynomial P$%(z), so that for each sector de-
fined by (33b) one obtains as a solution of (33a)

&(@) =sin® 3¢ cos? 3¢ P2-1/2:20-1/2(¢056¢). (38)

Next we shall discuss the solution for distinguishable
particles.

A. Distinguishable particles

The main new element which appears by addition of
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the pair inverse square potential to the problem treated
in Sec. II is that of order. This ordering factor is
already present in Calogero’s problem (g+0;f=0) and
stems from the fact that the potential term (%, - xd,)2 does
not allow particle i to overcome particle j. We saw that
the three-body potential induces polarization and as a
consequence it conserves order between the free parti-
cle and the bounded pair. By combining both potentials
the net effect is a superposition of both order and po-
larization. States like |a(bc)) and |a(ch)), which were
indistinguishable even for distinguishable particles, now
become different. Therefore, energy eigenstates of
Boltzmann particles are now twelvefold degenerate. We
may divide them into four classes:

R*=Y ¢4p.4» R =X L
L=y ¢4q'+11 L =y ¢4q'.21 (39)

for ¢ =0,1,2, g=4¢’ +s, and ¢, = ¢(¢,). The twelve
complete normalized degnerate wavefunctions of energy
are then

¥, (7, @) =Ny, 7 exp(— 3wr?) L} (w7 ?) sin®(3¢,
+qn/2) cos®(3¢,+ qn/2) pe-1/22-1/2
[cos(6¢, +gqm)], (40)

where 0 <@, <7/6, n,1=0,1,2,..., A=6(a+b+1). Dif-
ferent values of ¢ give polarized even or odd states
according to (39). The energy of this state is given by

E, =2w(2n+6a+ 6b + 61+ 1). (41)
B. Indistinguishable particles

We must symmetrize all twelve functions given by (40).

Again we consider the permutation operators P*, de-
fined by Eq. (15). One has, as usual,

P*(@o+qu/6)=¢l@,+ 2(q+4m)T]= ¢ 4 (@ gram)
=P(4m) ¢(¢,),
P oo+ 2qm) =, [($7 = @p) + (g + 4m - 1)r]

= ¢q~4m-1 (aqﬂm-l) EI’(4f7n - 1) ¢(¢q)’
(42)

where again we have chosen ¢ = ¢ ,, and, at the same
time, given a definition of ¢,=(7/6 — ¢,) + p/61. We see
then that starting with any ¢,, (2=0, 1, 2) via P*, we
generate all R states and that starting with ¢,,.,, we
generate all L states in such a way that a symmetrized
version of our problem becomes a linear superposition
of all states given by (39).

Having defined P(») in (42) and recalling that sym-
metrized R states are connected to L states via parity,
we may write the indistinguishable particle solution of
this problem in a rather compact form, that is,

2 1
W, cp)=ng Zo (P(4p) £ P(4p - 1)] (2)° W7, ¢,),  (43)
-0 5+
where ¢,, as usual, is different from zero only if
q/6m <@, <(q+1)/6m; the + sign between the P operators
is due to statistics (+ for bosons and — for fermions),
while (+)* is due to parity. In order to obtain a more
explicit form, we notice that

P(4p) (@) =N sin®[3¢,+ 3(4p + ¢)7)
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X cos®[3¢, + 3(4p + q)m] P2a-1/2:20-1/2 cog[6¢p, + (4p + )]
P(4p - 1) (@) =N(=1)""*® cos®[3¢, + 3(4p + ¢~ 1)7)

X sin®[3¢, + 3(4p + q — 1)1] Pie"1/2:2-1/2[cos (6,
+(4p+q-1ml (44)

We now define

®5,5(@0) =N, sin®*[3¢, + 5(4p + s)] cos?[3¢, + H4p + s)n]

P2a-1/2:201/2 [cog(Bgp, + (4p + s)M)],  (45a)
where
a =all+(=)]+b[1=(=)],
B=a[l-(-1)*]+b[1+(~1)],
Ns =(- 1)(1/2.4‘1;)(1-(-1)51. (45b)

Then we can write for the complete symmetrized solu-
tion of the three-body linear problem (3) which is an
eigenstate of energy (nl) and parity (w):

¥,(7, ¢)=x,,,(7)§<§(—)'§3:2)(t)‘ 650 (00, (46)

8=

where x(7) is given by (12), ¢,, is given by (45a),

0 <@, <7m/6. (+)° corresponds to bosons and (-)* to
fermions. Parity is positive for 7 =0 and negative for
T=1.

The corresponding energy is given by (41).

V. FINAL REMARKS

Although we realize the lack of realism of the linear
model treated in this paper, the fact that an exact solu-
tion for a three-body interaction is available may give
some insight into more realistic problems.

Extension of this model to two or three dimensions
should not be an easy task. Besides, the specific po-
larization and order effect is certainly a consequence of
linearity.

Our intention is to extend this model to four and, if
possible, to n particles. This has been done by Calogero
for the harmonic and inverse square potential.®

ACKNOWLEDGMENTS

It is a real pleasure to acknowledge the constant advice
and critical discussions of G.C. Ghirardi. I wish to
thank M. de Llano and R. Avalos for helpful comments.

I also wish to thank Professor Abdus Salam and Profes-
sor P. Budini as well as the International Atomic Energy
Agency and UNESCO for hospitality at the International
Centre for Theoretical Physics, Trieste.

*On leave of absence from Facultad de Ciencias, Universidad
de Chile, Santiago, Chile,

i(a) For the 6-function potential see H. M. Nussenzweig, Proc.
Roy Soc. (London) A 264, 408 (1961). (b) For the inverse
square and harmonic potential see F. Calogero, J. Math.
Phys. 10, 2191 (1969).

L, Fonda and G.-C. Ghirardi, Symmetry Principles in Quan-
tum Physics (Decker, New York, 1970).

3F, Calogero, J. Math, Phys. 12, 419 (1971).



Exact solution of a one-dimensional three-body
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The exact solution is presented of the scattering problem of three equal particles interacting in
one-dimension via two- and/or three-body inverse-square potentials. Both the classical and the
quantal problems are treated. It is shown that the outcome of this scattering problem is an extremely
simple relation between initial and final momenta, the latter being univocally determined by the
former even in the quantal case. The solvability of the problem, and the simple resuits just

mentioned, are peculiar to the equal particle case.

1. INTRODUCTION

Four years ago the one-dimensional quantal problem
of three equal particles interacting pairwise via qua-~
dratic (“harmonical”) and inversely quadratic (“centri-
fugal”) pair potentials was solved, namely all its eigen~
functions were explicitly exhibited, together with the
corresponding eigenvalues.! The spectrum of this prob-
iem, that is, of course, discrete (in the c.m. frame)
since the harmonical potentials prevent the particles
from escaping to infinity, turns out to be exiremely
simple; in fact it coincides, except for a constant shift
of all energy levels, with the spectrum of the identical-
particle problem with harmonical forces only.? If the
harmonical potential is instead absent, the spectrum is
continuous, and only scattering states exist. This scat-
tering problem has also been solved and the following
surprisingly simple result has been obtained: an ingoing
scattering configuration, characterized by (initial)
momenta p,, i=1,2,3, goes over into a unique outgoing
configuration, characterized by (final) momenta p], with
p;=1,.;.° This has been proved in the quantal case, the
proof being indeed simpler in this case than in the
classical case. The same outcome obtains, of course,
in the classical case, independently of the initial posi-
tion of the incoming particles; this has been explicitly
proved, and a simple relation has also been obtained
between the next-to-leading terms in the asymptotic
expressions for the positions of the particles. ?

These remarkably simple results are a peculiarity
of the case with equal particles (i.e., equal masses,
and equal strengths of all pair potentials).* One conjec~
tures them to originate from an underlying group-
theoretical structure, but this has not yet been fully
brought to light.® Such a conjecture is supported by the
observation that the simple results described thus far
for the three body problem are also valid (with obvious
extensions) in the N-body case.?

Quite recently Wolfes has shown that a similar, but
more general, one-dimensional 3~body model, charac~
terized by quadratic (“harmonical”) pair potentials, and
by inversely quadratic (“centrifugal”) pair potentials
and/or by inversely quadratic three-body potentials
(whose exact structure is specified below), is also
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amenable to exact solution.® The presence of the har-
monical potential guarantees that the spectrum is purely
discrete; and again this spectrum turns out to be

simply related to the spectrum of the problem with

only harmonical forces, this being certainly again a
peculiarity of the case with equal particles. If the har-
monical potential is missing the spectrum becomes con-
tinuous and only scattering states exist. The quantal
scattering problem can be solved exactly, exploiting the
eigenfunctions explicitly given by Wolfes®; and again
surprisingly simple results obtain, the property being
preserved, that any ingoing scattering configuration,
characterized by (initial) momenta p,, i=1,2,3, goes
over into a unique outgoing configuration, characterized
by momenta p;. I both two- and three-body potentials
are present, the rule relating p; to p, is simply p;=-p,;
if only the three-body potential is present, the rule
reads instead p;=—p,, ph=—p,, p3=—p; the 3 parti-
cles being labeled so that initially (namely, in the
asymptotic past) particles 1 and 2 are closer to each
other than to particle 3 (this property coincides with the
requirement that in the c. m. system, the initial
momenta of particles 1 and 2, p, and p,, have the same
sign, while the momentum p, of particle 3 has the op-
posite sign, so that the CM condition p, +p, +p,=0 im-
plies {p,) =1p 1 +1p,l = |p, +p,!). These results are
proved below, first in the quantal case, and then in the
classical case (when simple relations are also obtained
between the next-to-leading terms in the asymptotic ex-
pressions for the positions of the particles). They are
again peculiar to the equal particle problem, although
an explicit proof of this will not be given here.

2. THE SCATTERING PROBLEM IN THE
QUANTAL CASE

The quantal problem is characterized by the
Hamiltonian”

RN .
H:———ﬂ(zm)ém'f‘g{g(xi—xiﬂ)?

+3f (%, +x,,, - 2x,,.)°). (2.1)

The coordinate x; indicates the position of the ith parti-
cle, with the cyclic convention
X=X,

(2.2)

Copyright © 1974 American Institute of Physics 1425
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We always assume validity of the inequalities
g>=k*/dm), f>-1*/4m)

that are required to prevent collapse.?*:®

(2.3)

We shall work throughout in the c.m. frame, taking
moreover, for simplicity, the origin of the x axis to
coincide with the position of the center of mass of the

three-body system, so that
%, tx,+x,=0. 2.4)

Note that in this reference frame the “three-body”
potential in the Hamiltonian becomes simply

3
%fiz_lxgz.

It is convenient to introduce the “polar” coordinates
v and ¢ setting

%, = x,=V2¥sing, (2.5a)
%, + %, = 2x, = V6rcose. (2. 5b)

These equations, together with (2.4), imply the relations

X, =%,,,=V2rsinlp +i21/3)], i=1,2,3, (2.6a)
X, +X,,,=~2%,,,=V6rcosly +i(27/3)], i=1,2,3,

(2. 6b)
x,=-V2Brcosly +i(21/3)], i=1,2,3. (2.7)

In the polar coordinates the Hamiltonian reads (after
elimination of the CM part)*®

H:—[ﬁz/(Zm)]<-;—22+r'la%>+r'2M (2.8)
with
= éimi) -é?p—z +2[ g(sin3¢)2 +f (cos3¢)?]. (2.9

The singular nature of the interactions disconnects
the wavefunctions (apart from a symmetry requirement
in the case of identical particles) in different sectors of
configuration space, corresponding to different intervals
of values of the “angular” variable ¢.!® To discuss the
scattering process, we assume for simplicity the parti-
cles to be distinguishable; accordingly we consider
wavefunctions that differ from zero only in one sector.
If g#0 and F#0, it is sufficient to restrict attention to
the sector 0<¢ < 7/6; this may be replaced by any one
of the other 11 sectors, n7/6 <@ < (n+1)1/6, n
=1,2,...,11, by inverting the orientation of the x axis
and /or by permuting the particles.:® If instead g=0,
f#0, attention can be restricted to the sector ~7/8<¢
<w/6, the other 5 sectors, (2n-1)7/6<¢ <(2n+1)1/6,
n=1,2,...,5, being obtainable in a similar fashion.
‘Finally, if g#0, f=0, one considers the sector 0<¢
< m/3; although this case has already been solved, * we
shall report here, for completeness, also the results
appropriate to this case.

It is important to note that Eqs. (2.6) imply that the

sector 0 <@ <7/3 is characterized by the property
Xy > Xy > %3, (2.10¢)

the sector —7/6 <@ <7 /8 is characterized by
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Xy > Xgy  Xp>Xg,

(2. 10p)

and the sector 0 <@ <7/6 is characterized by the simul-
taneous validity of Eqs. (2. 10b) and (2. 10¢), implying

(2. 10a)

Thus the problem with g#0, f#0 is investigated as-
suming that the middle particle is closer to that on the
right than to that on the left, and assigning to the parti-
cles the labels 1,2, 3 from right to left; the singular
nature of the interactions guarantees that both proper-
ties are preserved throughout the motion. Note that the
second property corresponds to the requirement that
particle 2 stay to the right of the c.m. of the system;
in the c.m. system defined above, this corresponds
simply to x,<0. As for the problem with g=0 and f#0,
it is investigated in the case where there are two parti-
cles (labeled 1 and 2) to the right of the center of mass
of the system, and one (labeled 3) to the left (in the
c.m. sector defined above, this corresponds simply to
the sector x, >0, x,>0, x,<0). Finally, the problem
with g#0, f=0 is investigated labeling the particles in
increasing order from right to left. These properties
are again preserved throughout the motion.

le—x2|<xl—x3’ |x1“xz| <Xy —Xg,

Xy > K> Ky Ky =Xy < Ky = Xge

The scattering problem is treated in the time-inde-
pendent framework. The eigensolutions of the stationary
Schrédinger equation,

Hy=Ey, (2.11)
can be written in the separated form

y=R(r)a(y), (2.12)
and it is easily proved that!:®

R(r)=J,(p7), (2.13)
where

E=r%p*/(2m) (2.14)
and

M& (@) =[72/2m) e (¢). (2. 15)

The explicit expressions of v are'-®

v=3(2l+g+b+1), 1[=0,1,2,.--  if g#0, f#0,

(2. 16a)
v=38(1+b+%), 1=0,1,2,--+, if g=0, f+0,

(2. 16Db)
v=3(l+a+3), 1[=0,1,2,---  if g#0, f=0.

(2. 16¢)

The corresponding eigenfunctions of M are
® (@) = (sin3¢ ' /2(cos3y )+t /2
X P@:2)(cos6¢)0(@)0[(1/6) ~¢] (g#0, f#0),
(2.17a)
& (¢) = (cos3¢)>+*/2C 2+ /?)(sin3¢)
x8lp - (1/6)16l(n/6) ~¢] (g=0, f#0),
(2. 17b)
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& ()= (sin3¢)**1/2C{**1 /¥ (cos39)

x68(@)6l(n/3) -@] (g#0, f=0). (2.17¢)

In these equations
a=%(1+gdmh-2)/2, (2.18a)
b=3i(1+famn2)/?, (2.18b)

P§"~” is a Jacobi polynomial, C{C’ is a Gegenbauer
polynomial, and 8 is the usual step function, 6(x)
=5(1+x/1x]).

The eigenvalues v and eigenfunctions & of the prob-
lem with g#0, f#0, go over, as g—0 resp. f—0, into
those eigenvalues and eigenfunctions of the problems
with g=0 resp. f=0 that satisfy the additional condition
&(P)=0, with =0 resp. ¢ =7/6.%° This corresponds
to the known relationship®

cosa Pt /®(cos2a)=C2:1 /¥ (cosa)

x{@1+D1T(a+3) 12T (@ +1+ )]},

(2.19a)
or, equivalently,®
sina P{#!/?(cos2a) = C 3.} /¥ (sine)
x{(=)H21+ D11T(a+3) /12T (a +1+3)]}.
(2.19b)

Let us also recall the explicit expressions of sin3¢
and cos3¢ in terms of the original coordinates:

sind¢ = = V2 (x; = %) (xg = x3) (x5 = %,)/7, (2.20a)
cos3¢ = (2 /2T /2(x, +x, — 2x,) (x, — x5, — 2x;)
X (xg =2, = 2x,) /73, (2.20b)

Here 7 is the “radial” coordinate of Eqs. (2.5), that is
also expressible, in terms of the original variables, in

the manifestly symmetrical form
1’2='.}I[(X1 —x2)2+(x2—x3)2+(x3—x1)2]. (2.21)

It is now convenient to introduce the two symmetry
operations defined by

T®x =x,, T®x,=x,, TPx,=x,, (2.22a)

Ty, =-x,,, i=1,2,3. (2.22pb)
Clearly they leave invariant the » variable,

TWy=y, n=2,3, (2.23)
while they act as follows on the ¢ variable:

T®p=-q, (2. 24a)

T®¢=(n/3) -9, (2. 24b)
so that

T® sin3¢ = ~sin3¢, T® cos3y =cos3y, (2. 25a)

T sin3¢ =sin3g, T® cos3¢ = ~cos3¢. (2.25b)

Moreover, and most important, T transforms the
interval - 7/6 <@ <7 /6 into itself, while T® trans-
forms into itself the interval 0 <¢ < /3. Therefore T®
can be applied to the angular eigenfunctions (2. 17b) of
the problem with g=0, f#0, yielding

T®e,=(-)'8,, (2.26)

J. Math. Phys., Vol. 15, No. 9, September 1974

1427

while T® can be applied to the angular eigenfunctions
(2.17c) of the problem with g#0, f=0, yielding

T®%,=(-)e,. (2.27)

The scattering problem is now easily treated, in
complete analogy to the already known case. ¥ The most
general eigenfunction of the Hamiltonian (2. 1) (in the
c.m. frame) is written in the form

zp:é c J, ()@ ,(9), (2.28)

where the coefficients ¢, are complex constants, and

p, v and &, are given by Egs. (2.14), (2.15) and (2.17).
To discuss scattering, only the asymptotic behavior of

this wavefunction when all particles are far apart from

each other is needed. Then

PP+ houes

where

(2.29)

Y= (=21p1)2 /22 ¢ expl-ipr +iz1(v +3) 16, (2.30)
1=0

and
Yo = (2101120, ¢ emplipr =3 mv + )6, (2.312)

=(—2ﬂ§r)§,c,exp[—i§r+i%ﬂ(V+%)]<I>,

xexpl-imv]. (2. 31Db)

Equation (2. 31b) differs only notationally from Eq.
(2.31a), with

p=-p. (2.32)

The wavy symbol ~ in Eq. (2.29) and below indicates
asymptotic equality, i.e., equality up to corrections of
order r "2,

The stationary eigenfunction describing, in the CM
frame, the scattering situation is characterized by the
asymptotic condition

zpu"'cexp(i%pjxj), (2.33)
with
3
PP=21 (2.34a)
j=1
and
3
;lpj:o. (2. 34b)

The restrictions (2. 34) correspond to energy conser-
vation [see Egs. (2.11) and (2. 14)] and to momentum
conservation (in the c. m. frame). Additional restric-
tions must be placed on the initial momenta p,, in order
that the plane wave (2. 33) describes an incoming scat-
tering state in the sector under consideration for each
problem. For completeness we now report these condi-
tions in detail, even though they play no explicit rdle in
the proof. We leave it to reader the verify that, in each
case, the final momenta p/, (see below) satisfy the con-
ditions characteristic of an oufgoing scattering con-
figuration in the same section of configuration space.

An incoming scattering configuration is characterized
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by the condition that the particles move freely (because
they are still far apart from each other) and approach
each other (so that, going backward in time, they do
not collide). This requirement, together with the c.m.
condition (2. 34b) and the conditions (10) characterizing,
for each problem, the sector under consideration, im-
ply the following restrictions for the initial momenta:
in the case with g#0 and f#0,

D3> 0=p,> py; (2. 35a)
in the case with g=0, f#0,

p;>0, p,<0, p<0; (2. 35b)
in the case with g#0, f=0,

bs> D> s (2. 35¢)

It is now easy to prove that, if the constants c, of Eq.
(2.28) are chosen so that Eq. (2.30) yields (2. 33), then
from Egs. (2. 31) there also follows

3
Youe =€XP(~ iTA)c €Xp ijL:{p;xj , (2.36)

the constant A and the final momenta p) being given by
the following prescriptions: in the case g#0, f+0,

A=3(a+b+1), pi=-p;, i=1,2,8; (2.37a)
in the case g=0, f+0,

A=3(b+3), pi==py DPi=—D, Pi==ps (2.3Th)
in the case g#0, f=0,
A=3(a+3), p,=ps, 7=1,2,3. (2.37c)

The proof obtains'® inserting the explicit expression of
v, Egs. (2.186), in Eq. (2.31b), applying the transfor-
mations T resp. T in the cases g=0, f#0 resp.
g#0, f=0 [to get rid of the factors exp(3iml)=(~); see
Eqgs. (2.26) and (2, 27) and recall that T do not act on
7, Eq. (2.23)], comparing the resulting expression with
Egs. (2.30) and (2. 33), and finally using Egs. (2.22)
(unless both g#0 and f#0) and the definition (2. 32).

The “initial” plane wave (2. 33) describes, in the
sector under consideration in each case, the (free)
motion of particle i with momentum p,, the conditions
(2. 35) insuring in each case that this motion corre-
sponds to an initial scattering configuration, i.e., one
where each particle gets less close to every other
particle if time runs backward. The “final” wavefunc-
tion (2. 36) describes (in each case, in the same sector
of configuration space), the (free) motion of particle i
with momentum p;. The result just proven implies that
the stationary eigenfunction of the Hamiltonian H, Eq.
(2.1), that is identified by the requirement that its in-
coming part coincide with Eq. (2.33), contains only the
outgoing plane wave (2. 36). Thus an initial scattering
state, characterized by particie 1 having momentum p,,
particle 2 having momentum p, and particle 3 having
momentum p,, can go only into the final state charac-
terized by particle 1 having momentum py, particle 2
having momentum p}, particle 3 having momentum pj,
the values of these momenta being related to those of
the initial momenta by the simple rules (2. 37). The
final momenta satisfy the equations (2. 34), implied by
energy and momentum conservation; note however that
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these 2 equations would not be sufficient to determine
the 3 momenta p;. Indeed, if the 3 particles under con-
sideration were not equal, to an initial ingoing scatter-
ing state characterized by given momenta p,, there
would generally correspond a continuum of <! possible
outgoing final states, a (continuous) function giving the
probability density that any one of them be the outcome
of the scattering process.

3. THE SCATTERING PROBLEM IN THE
CLASSICAL CASE

The classical problem is characterized by the
Hamiltonian
3

3
H=(2m)™* {Zﬁpf «|—£Z=]}L [gle, =x,,)2+3f (x, +x,,, —2x,,,)72].

(3.1)
To exclude collapse we must now assume the conditions
g=20, f=0. (3.2)

We shall again investigate the 3 problems characterized
by g>0, >0, by g=0, />0, and by g>0, f=0, re-
stricting attention in each case to the appropriate sec-
tors of configuration space, introduced in the previous
section.

We work again the the CM frame introduced above,
and use the “polar” coordinates rand ¢, related to the
particle coordinates by Eqs. (2.5)—(2.7). The Hamil-
tonian (3.1) is therefore written in the separated form

H:E:pf/(Zm)+Bz/'rz, (3. 3)
B?=p2 /(2m) + 3| g(sin3¢ )2 + f(cos3¢) 2], (3.4)
E and B being two constants of motion.

From these equations, and the explicit forms of p,
and p,,

p,=m % ; (3.52)

p,=mrz%, (3.5b)
there follows!!

() =[(2E /m)(¢ - t,)? + B> JE]* /> (3.6)
and

e () =%(arcsin{[a V(] /?), (3.7)
with

™M (f)=a +Bsin{y +6arctan[(t ~1,) /T]}, (3.8)
where

a=3{1+9(g-1)/(2B%)], (3.9)

B=[a?-9g/(2B*)/? (3.10a)

=3{[1-9(g+s) /(2B - gf (9/B*)?, (3.10b)
T=(m/2) '*(B/E). (3.11)

Note that the definition of B?, Eq. (3.4), implies that a
is positive and B is real (by convention, positive).

In Eq. (3.6) #, is the time when () assumes its
minimal value 7,=BE"/?, while the quantity v’ in Eq.
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(3. 8) is related to the values of ¢ at given times by any
one of the following relations:

sin3¢ (f,) =[a + Bsiny /2, (3.12a)

8in3¢ (+®)=[a - Bsiny®L/2 (3.12b)
2

that incidentally imply ¢ (+ =) =@ (- »),

These equations refer to the case with g>0, f> 0;
in Eq. (3.7), the positive determination of the square
root, and the principal determination of the arcsin func-
tion, are intended. It is easy to convince oneself that the
positivity of both g and f guarantees & **(#) to be always
positive and less then unity, implying that ¢ (¢) is a con-
tinuous smooth function of time satisfying the restric-
tion 0<@(#)<7/6. However, in the limiting form that
these equations take for g=0, >0,

3V (#)=1[1-97/(2B?) (1 +sin{y™ + 6 arctan((t - £,)/T]})
(3.13)

is still less than unity, but does reach the value zero;
therefore the coordinate ¢(t), Eq. (3.7), has a discon-
tinuous time derivative at the time ¢ defined by

sin{y® +6arctan((f - £,) /T]}=-1, (3.14)

namely at the time f such that ¢(¢)=0 or, equivalently,
%,(£)=x,(t). Indeed, this solution describes the motion
that obtains if the two-body potential in the Hamiltonian
(3.1) is replaced by a zero-range infinitely repulsive
pair potential,!? whose only effect is to exchange the
momenta of two particles whenever they encounter
(elastic collision), thereby preventing them from over-
taking each other.

The motion in the case g=0, f> 0 can also be evinced
from Eqgs. (3.7) and (3. 13); it is sufficient to take the
appropriate determination of the square root in Eq.
(3.7), so that, at the time #, ¢(¢) changes sign. This
prescription is automatically taken care of by replacing
Egs. (3.7) and (3.8) by

@ () =%arcsin[d @ ()] (3.15)
2@ () =[1-9f/(2B>)}/*
xsin{y ® + 3arctan[(t - t,) /T]}. (3.16)

Here the principal determination is understood for the
arcsin and arctan functions, T is always defined by Eq.
(3. 11), while ¥ ® is now related to the values of ¢ at
‘given times by any one of the following relations:

sin3¢ (o) =[1 - 97 /(2B%)]* /2 siny @,
sin3¢ (+ ©) =[1 ~ 97 /(2B>) /> cosy @,

(3.173)
(3.17p)

which incidentally imply ¢ (+ «)= —@ (- =), Note that now
@(#) is again a continuous smooth function of time, but

it is restricted by — /6 <@ () <7/6. The function #({) is
always given by the same formula, Eq. (3.6).

An analogous discussion can be made for the limiting
case g>0, f=0. In this case the function & ®’(¢) is al-
ways positive, but can reach the value 1. The question
that now arises refers to the determination of the
arcsin function in Eq. (3.7), rather than the square
root (that must always be taken positive). If the prinei-
pal determination is always maintained, ¢(¢) gets re-
flected back at the time 7 defined by
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sin{y® +6arctan((t - £,)/T]}=1,

namely at the time 7 such that ¢(¥)=7/6, or, equiva-
lently, x,(f)=3%[x,(¥) +x,()]=0. On the other hand,
the formulas relevant for the motion in the g>0, f=0
case can be obtained by changing appropriately the de-
termination of the aresin function in Eq. (3.7), as ¢
crosses the value £. Alternatively, and more straight-
forwardly, one can use the equivalent formula®

@ =+ arccos[d ®()], (3.18)
with
3(t)=[1-9g/(2B)] /2
xsin{y® —3arctan[(t - t,)/T]}, (3.19)

using now the principal determination for both the
arccos and arctan functions. Here T is always defined
by Eq. (3.11), but ¥® is related to the values of ¢ at
given times by

cos3¢ (t,) =[1-9g/(2B?)] /2siny @, (3.20a)
cos3¢(x»)=+[1-9g/(2B?) ]} /2cosy®, (3. 20p)

implying ¢ (+ =)= (7/3) = ¢ (- «) [note that, in this case,
0<@(t)<m/3].

These equations, together with Egs. (2.7), provide
the explicit determination of the motion of each particle,
once the constants E, B, t,, and Y, are given. These
constants, on the other hand, are easily determined if
the position and speed of the particles at any one time is
given. In a scattering process the “initial” conditions
are assigned in the asymptotic past, setting

x,(9) t:—_w(pi/m)t+a,+0(t'1), i=1,2,3, (3.21)
with

3 3

‘Ed‘bizgaizo, (3.22)

the last two conditions corresponding to our choice of
reference frame, with the center of mass sitting at the
origin of the coordinates. Then the constants E, B, and
t, are given by the explicit formulas

3
E=<2m)“§p§=(pf + D3+ pups) /m, (3.23)

B?=p2 (— ) /(2m) +3{ glsin3¢ (- ©)]-? + f[cos3¢ (- =)]7},

(3.24)

to=—la,(2p, + p,) + a,(2p, + p,)1 /(2E), (3.25)
with

@(~~)=arctan [V3(p, - p,)/(p, + P, = 2,)] (3.26)
and

Po (=) =V3Im(pa, - p,a,), (3.27)

while the constant Y™ is given by Eqs. (3.12b), (3.17b),
or (3.20b), depending upon which one of the 3 problems
one is considering. There formulas obtain in a straight-
forward manner from the definitions (3. 3), (3.4), (3.5),
and (2.5), and provide, together with Eqs. (2.7), (3.6),
and (3.7) or (3.15) or (3.18), the complete explicit
solutions of our problems. It should, of course, be re-
membered that the momenta are also assumed to satisfy
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FIG. 1. The classical motion forthe three-body problem dis-
cussed in this paper. The continuous lines indicate the position
of the three particles, and of the center of mass of the two ex-
ternal ones, as a function of time, for g=f=5 (with m=1, and
initial (#——) conditions p;==2, py=~1, p3=3, a;=2, ay=
-2.5, a3=0.5). As g—0*, f—~0*, the motion, with the same
initial conditions, degenerates into the shown sequence of
straight segments, yielding finally the same asymptotic
outcome.

the restrictions discussed in the previous section, Egs.
(2. 35), that are required in each case in order that in
each case the initial configuration belong to the ap-
propriate sector of configuration space, and describe in
that sector an incoming scattering state, with all the
particles approaching each other.

In the asymptotic future the particles move again
freely (but now away from each other):

(0 = (p)/m)t+a,+0@™"), i=1,2,3.

It is easy to verify that the quantities p; and a; are
given by the following simple rules: if g>0 and >0,

(3.28)

pi==p, i=12,38, (3.29a)

aj=-a;, 1=1,2,3; (3.29b)
if g=0, />0,

ply==bDs Pi==D, Ds=~Ds (3.302)

ay=-a, aj=-a, aj=-—as (3. 30p)
if g>0, =0,

pi=ps; i=1,2,3, (3.31a)

a,=agy, i=1,2,3. (3. 31b)

In fact, these follow rather directly from the equation
of motions, even without using the explicit expressions
(3.23)—(3.27) of the constants that appear in them,

The staggering simplicity of this result is clearly a
peculiarity of the equal particle case; if the masses of
the particles were unequal, or the coupling constants of
the potentiale for different pairs and triplets of parti-
cles were different, then both p; and a] would depend on
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all the p,’s and the a,’s, and moreover on the values of
the masses and of the coupling constants. Of course,
even in the equal-particle case, the actual motion does
depend on these parameters; it is only the asymptotic
free motion, Eq. (3.28), that is independent of (almost
all) the parameters, being completely described by the
simple rules of Eqs. (3.29)—(3.31). This point is
illustrated in Fig. 1, that displays the actual motion in
one specific case, for g>0 and f>0. The motion that
would result for different values of g and f (but with the
same initial, and therefore final, asymptotics), can be
easily inferred from the case displayed, noting that an
increase in g and f, implying more repulsion between
the particles, has the effect of separating the different
trajectories, while on the contrary for very small
(positive) values of g and f the distance between adjacent
particles, and between each particle and the center of
mass of the other two, can become quite small, As g
and f tend to zero (through positive values), the motion
degenerates into a sequence of free trajectories,
separated by sharp collisions between adjacent particles
(those on the rhs, in the sector on which we have
focused in this paper; see Fig. 1) and between the mid-
dle particle and the center of mass of the other two (or,
equivalently, the center of mass of the whole system).
In the first type of collision, the two particles involved
exchange their momenta; in the second type of collision,
the middle particle reverses its momentum, and the
other two exchange and reverse their momenta. The
corresponding motion is also reported in Fig. 1. Note
that, if the initial momenta of the particles are p,, p,,
and p,, in the limiting motion corresponding to g— 0%,
f—0*, no other values of the momenta appear besides
these 3 and the three values —p,, —p,, and —p,.**
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1See Ref. 3 and, more specifically, Sec. 4 of Ref. 2.
UThe derivation of these results is straightforward; see Ref.
3 and Appendix D of Ref. 2.
12Acf.*an.lly, in the sector under consideration, this potential gets
a chance to act only between particles 1 and 2,
13This remark suggests the possibility to solve the 3-body (and
maybe even the N-body) problem with a zero-range interac-
tion as that considered by J.B. McGuire, J. Math. Phys. 5,
622 (1964), but acting not only between pairs.
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Propagation of waves in a random medium is studied under the ‘“‘quasioptics” and the “Markov
random process” approximations. Under these assumptions, a Fokker-Planck equation satisfied by the
characteristic functional of the random wave field is derived. A complete set of the moment
equations with different transverse coordinates and different wavenumbers is then obtained from the
Fokker-Planck equation of the characteristic functional. The applications of our results to the pulse
smearing of the pulsar signal and the frequency correlation function of the wave intensity in

interstellar scintillation are briefly discussed.

. INTRODUCTION

Phenomena such as the twinkling of starlight and the
ionospheric, interplanetary, and interstellar radio wave
scintillations involve the propagation of an electromag-
netic wave in a random medium. A complete statistical
description of the wave field requires the solution of all
moments of the wave field with different positions and
different wavenumbers.

A complete set of the moment equations of the wave
field with different transverse coordinates but the same
wavenumbers has been derived under the “quasioptics”
and the “Markov random process’” approximations, !+?
which can be applied to both weak and strong scatterings.
However, such a set of the moment equations with the
same wavenumbers is not sufficient to describe all the
statistical properties of the random wave field, Some ob-
served quantities in interstellar scintillations, such as
the pulse smearing and the correlation function of the
intensity fluctuation with different wavenumbers, >% need
the solution of the moment equations with different wave-
numbers, It is the purpose of this paper to derive a com-
plete set of the moment equations with different trans-
verse positions and different wavenumbers under the
quasioptics and the Markov random process approxima-
tions. The results reduce to those of Tatarskiil+? in the
case of the same wavenumbers. It is noted that the meth-
od of the derivation used here is new, and simpler than
that by Tatarskii.:?

It is the idea of Hopf® to introduce the “characteristic
functional” as an alternative way to describe the com-
plete statistical properties of a random field. In Sec. II,
we will derive a Fokker —Planck equation for the charac-
teristic functional of the random electromagnetic field.
In Sec. III, a complete set of the moment equations will
be derived from the Fokker —Planck equation satisfied
by the characteristic functional. Some applications of the
results will be briefly discussed in Sec. IV.

il. FOKKER—PLANCK EQUATION FOR THE
CHARACTERISTIC FUNCTIONAL OF THE WAVE
FIELD

We consider the propagation of a monochromatic wave
E (r, ) obeying the scalar wave equation

V2§ (1) + (w?/c?)e, (r)® () =0, )

where
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& (r) may be regarded as a Fourier component in time
of a general wavefunction. Here (w/27) is the frequency
of the monochromatic wave, c is the speed of light, and
€,(r) is the refractive index of the medium in which the
wave propagates.,

E (r,)=% (r)etv",

The refractive index € (r) is a random function and
depends on both the position r and the wave frequency w.
As an example, we will consider in this paper the pro-
pagation of the high frequency waves with w> w,, the
plasma frequency of the medium, in the plasma medium.
This applies to the propagation of the radio waves in the
ionosphere, the interplanetary space, or the interstellar
medium,. If N, is the electron density, then we have

€,(r)=1-w¥/w? (3)
and
(4)

where m is the mass and e is the charge of an electron,

Now N, and € (r) fluctuate irregularly. Let () denote
an average over an ensemble of propagation volumes,
Then define

(e(r)) =€,0(r),
N,(r)=(N,(r)) + ON,(r),
B(r)=-4me?6N,(r)/mc?.
We have
v2g (r) + #2[1 + B(r)/¥?]@ (r) =0, (5)

where now B(r) is a wave-frequency independent random
variable with zero mean and where the wavenumber

k=(w/c)V €00
It is useful to define

& (1) =u(k, r)etts,

2 2
w?=47N,é*/m,

(6)

from which we obtain

. dulk, 1) <a2 3% 9%\ =
2ik 37 + s-z-g+—a-;!+-a;§ u(k,r)+ﬁ(r)u(k,r)_0. (7)

Let

r=(z,p), p=(x,y), and s=(p, k).
In order to proceed further, we will make two assump-
tions about the wave equation and the properties of the
medium. '

Copyright © 1974 American Institute of Physics 1431
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First, we assume that the term 824/3z2 in Eq. (7) can
be neglected. This is called the “quasioptics” approxi-
mation or “parabolic’” approximation, Physically this
assumption is equivalent to neglect the reflected wave
since the equation has been reduced to one with a first-
order derivative in z from the one with a second-order
derivative, Thus we have

3 1 1
Eu(z, p, k) + 3% Vaulz, p, k) + 5% B(z, p)u(z,p,E)=0, (8)
where

V2=0%/0x% + 32/ 9y2.

Second, we assume that B(z, p) is delta-correlated in
z direction. This is called the Markov random process
approximation. As we can see later, this is equivalent
to assume that the correlation scale of B(z, p) in z direc-
tion is much less than the correlation scale of the wave
field # in z direction. We then have

Bz, p)B(2’, p')y=28(z —2")A(p - p*) (9a)
and

Alp -p") = [*(Blz, p)B(z’, p")) d2’. (9b)

Note that the z dependence of A(p) is not explicitly ex-
pressed for convenience.

The validity of the above two assumptions has been
discussed. 27 We will only note that the “quasioptics”
approximation and the “Markov” approximation can be
applied in the strong scattering cases,

It is known that the probability distribution function at
time ¢ of a random variable x(#) that satisfies a differen-
tial equation of the first order in time with a delta-cor-
related external random force satisfies the Fokker—
Planck equation. In our case, z plays the role of time.
However, for a fixed value of z, the random field
u(z, p, k) does not have just a discrete value but has an
infinite number of values and is a function of p and k. It
is the idea of Hopf® to introduce a characteristic func-
tional ¥ to describe the statistical properties of a ran-
dom field, One defines the characteristic functional as

‘11(39 v, V*) = <exP(7rR,)>
={expfi [ [lu(z, p, B)v(p, k)
+u*(z, p, R)v*(p, k) dp dE}), (10)

where * denotes complex conjugate and the range of in-
tegration is over all the allowed values of p and k. Here
v and v* are treated as independent functions of p and &.

It is the purpose of this section to derive a Fokker—
Planck equation for the characteristic functional ¥ de-
fined above. Tatarskii! derived an equation for the cha-
racteristic functional with constant wavenumber k. It is
noted that we treat in Eq. (10) the wavenumber % as a
variable,

Using s =(p, k), we write Eq. (10) as
W(z,v,v*)= (exp{if [u(z, s)v(s) +u*(z, s)v*(s)lds}). (107)
We differentiate Eq. (10) with respect to z and obté.in
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by Eq. (8)
2 w(e,v, )
=<eXp(iR‘)if [(%)[Viu(z, s) + B(z, p)u(z, s)Jv(s)
+ (Z.%)[vf,u*(z, s) + B(z, pu*(z, S)]V*(s)] ds>. a1

First we calculate the terms (exp(iR,)V?u(z, s)) and
(exp(iR,)V";u*(z,s)) in Eq. (11). From Eq. (10), we have

8% (z, v, v¥)

Jre— =iz, s) exp(iR,)) (122)
and
%:i(ﬂ*(z,s)exp(ﬂi‘)). (12p)

The operators 8/6v(s) and 8/6v*(s) denote functional de-
rivatives. ®:® Operating V2 on Egs. (12a) and (12b), we
have respectively

o (2, v, v*)

. 1
(V2u(z, s)exp(iR,)) = 7Vi G (13a)
and
. 1_, 60 *
(Vi*(z, ) expliR,)) = =3 é‘z;"s’ v (13b)

Next we consider the other terms in Eq. (11), namely,
(exp(iR,)B(z, p)u(z, s)) and (exp(iR,)B(z, p)u*(z, s)). We
define

glv, v*, z, s) =(exp(iR,)B(z, p)). (14)
Expand exp(iR,) in power series as follows:

exp(iR,)
=§oﬁlf{if [u(z, )v(s) +u*(z, s)v*(s)] ds}™. (15)
Then we have

glv,v¥, 2, s)=f} —mi-([f(ulu1 +u}v¥) ds,|

i
m=0 m

X[ [ (uyv, +upvy) ds,] « [ [ (v, +uxvr)ds 18z, o)),
(16)

where we define s,=(p,, k,), v,=v(s,), u,=ulz,s;), and
etc. for i=1,2,3, - In the expansion of Eq. (16), the
existence of moments of all orders is assumed.

Consider now the term in Eq. (16) like (uf1u2z e+« u2mpB),
where x5! denotes either «, or «¥. From Eq. (8), we
may write u(z, s) as

i (%1
u(z, s)=u(0, s) + §-j; %

><[Vf,u(z',s) +8(z’, pyulz’, s)l dz’. amn

Note that u(z, s) does not depend on B(z’,s) for z’'> 2z,
Let Az be an increment in z, which is larger than the
correlation scale of B(z,p) in z direction, and write

i z
w(z,s)=u(z -2z, s)+§ z

2=z

X[Vf,u(z', s) +B(z’, pyulz’, s) dz’, (18)
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where u(z ~ Az, s) has no correlation with 8(z, p). Sup-
pose Az is small, and expand u(z, s) as

u(z, s)=u(z - Az, s) + 21 (%)Vzpu(z -Az,s)

+£ u(z = Az, s)

5 % I_Mﬁ(z’, p) dz’ + O(A%z), (19)

Under the Markov approximation, the correlation scale
of B(z,p) in z direction is zero. Therefore, we let Az
— 0. We note that

lim u(z —= Az, s)=u(z,s) (20)
Ag~0

and

(Bz,0") [ %, Blz',p) dz")=Alp = p"). (212)

For higher moments such as

T‘ = (B(zy p) J;fA‘B(zl! pl) dzl oo

x [*, Bz, 0) dz),
we will assume as in the derivation of ordinary Fokker—
Planck equation®
lim 7', =0,

Ag-0

i=2, (21b)

This assumption can be satisfied if the random function
B(z, p) has a Gaussian, or normal statistics, However,
the assumption made in (21b) is more general and does
not require the Gaussian statistics of 8(z, p) in general,

It follows directly from Eqs. (16), (19), (20), (21a),
and (21b) that, as Az— 0,

(u(z, $,)B(z, p)) = (i/2k,)u(z, s,)YAlp - p,)

and, in general,

{uyvy + ufFvE)eeo(u, v, +uXv¥)B(z, p))

—2 Alp-p,) ( )((u,,u1 + uFv¥) oee

Xy gV oy Hulk i), —ufvy)
X (g1 V gy 105 oo (w0, + WhVR)) (22)

by noting that (u(z - Az, s)B(z, p’))=0. Other than the as-
sumption made in (21b), Eq. (22) is exact under the
delta-correlation assumption. But we see that really we
only require the existence of an intermediate scale Az
which is larger than the coherence scale of 5(z, p) but
smaller than the scale of variation of # such that

u(z - Az, s)=u(z,s). The existence of the intermediate
scale and Eq. (21) are the essence of the Fokker-Planck
equation,

Substituting Eq. (22) into (16) and noting that all the
s,’s are dummy variables, we then have

&lv,v*,2,s)

=2 () ) [ f Alp = p Yy, +utw}) -
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XUy V oy + 0 vE Wu, v, —wkv¥))ds, oo ds . (23)

We can also write Eq. (23) as
g(V’ 12y s)
=° zm—l
- m=1 15 !

X(uyvy +wFvy) - (u,,.

_}%A(p _pl)((ulyl _u*ly*l)

L Fuk v ) ds'dsy eeds,, .

(24)
where s’ =(p’, k'), u'=u(z,s’), and v’ =v(s’).
Setting m —1=n, we have
gv,v*,z,s)
~7‘ (7')" < ) / / A(p - pl)((ulyl -u* IV*I)
n=0 n!
X (uyvy +uFv¥) oor (u,v, +utv)) ds'ds, - ds,. (25)

From Eq. (25) it is easy to show

glv,v*,2,8)= (:2-1—>

= v*(s'Xu*(z, s")exp(iR))].
By Eqgs. (12a) and (12b), we write g as
glv,v*, z,5)

= () [ % a0~ (1) ey =15 sy
(2o

% Alp = p"lv(s)ulz, s")exp(iR,))

(257)

Define the operator M(s) as

M(s) v(s)

o ) @

We then have

glv,v*,z,8)= (-;—)

We also note that

%A(p - M(sV (2, v, v¥).  (28)

(Ble, plulz, s)explir =3 B2 (292)
and
Bz, Wi (z, ) expliR )y = > EL L %aS) (29b)

ov*(s

By Egs. (11), (13a), (13b), (28), (29a), and (290), we
obtain

6% (z, v, v*) (z

22-(9) [ bty -romsi)

1 dsds’ ’ ’
-3 f / - Alp = p)it(s)i(s" ). (30)

This is the Fokker —Planck equation for the characteris-
tic functional ¥ of the random electromagnetic field

u(z, p, k). Since the characteristic functional is the
Fourier transform of the probability functional, Eq. (30)
is in fact the Fourier transform of the Fokker -Planck
equation. Our technique used here can also be applied to
the derivation of the Fokker-Planck equation for the or-
dinary characteristic function of a random function x(#).
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HI. MOMENT EQUATIONS

We want to derive a complete set of moment equations
in this section. First, we expand ¥(z, v, v*) as a power

series
m
Uz, v, v¥)= E E (/u(z,s)v(z,s)ds)
m=0n=0
n
X (fu*(z,s’)v*(z,s’)ds’)
SO ]
=2 2 Tt Kl ), 1)
where
Km,n(z, v, v¥) =f e f rm,n(z’ S15 %" 3 SmiS1s oty Sy’|)
X Dy vee mel’f" . y:"dsl .ee dsmds‘l .o ds”l
and
Lo nl2y $15 000y Spisly ooy ) =gty »oou " ooe¥’). (32)

T, . is the m-nth moment of the random field u(z, s).
The object of this section is to derive a differential equa-
tion satisfied by T,, .

We note that, for any function f(s) of s, we have
5
*
f RS 57 B2, v, 7% ds

/ / & T, (2,8, o0y 8,581, e, sOf(s,)

Xyy oo v V' e VX ds) coods, ds{ e ds] (33a)

and
f f(S)V*(S)ﬁ; K, a(z,v,v¥)ds

I

lm»n

E I1m "(Z Sy o0t Sm)s!'. oo I)f(s{)
i-

[Bl"m LA (Vf +...+£-Z’L2_..._
Ry k, &

Z;T(A(pi —p)) +Alp; - Pi))+27
kR

m=0n=0 m 'n‘

Alp; = p3)
_z_'-k% rm,n vV,

i=1 j=1 4=1 j=1

Since v(s) and v*(s) are arbitrarily defined, the quantity
inside the bracket in Eq. (36) must be zero. We have
then the following differential equation for the moment
function I",,

oT ’
__.a.nzl..ﬂ.(z Sy s, sl’ eee g )
2 2 2 2
__[vl T/ G Z;_]r
2 kl k k{ k’/' m,n

m

-pj) +Alp; =p,)]
k),

1 (i 5 A(I;, =p) _H 5 [A(p,
ial =l

i =1 j=l

4

+5

A(pi ‘)>rm, o
i=1 j=1

17 37
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Xpy eee v VE eee vkl ds, oo ds ds] ~e+ ds]. (33Db)
From (33a) and (33b) we obtain
1 dsd.
-7 fj skks, Alp - p')M(s)M(s')K 2,7, V%)
S f f( (pf -0y
i=l j=l ( j
Z}Z} [A(Pj pj) +A(p) ~ P;)J
i1 4=l k, k’
Alp; -p)
+iZ,>1§>1 k'k’ rm,nvl "'me;.k""l}:,
Xds, +++ds, ds{ - ds]. (34)

We also note that

0K
v(s)V?2 —mall d
[ rom e
___/ f(vf+V§+...+vfn)rm'nvl...Vm,,in...x,:;

Xds, +++ds ds{ «+ ds}, (35a)
and
6 m,n
fv* (s)V2 (s ds

.o ymyrl vee y:"

f---'/’('\7;2+v;2+---+v;,2)1“m.,,u1

Xds, ==+ ds, ds] -+ ds!, (35Db)

2 _ o2 2 __ 72
where V,__ij and V=V

By Egs. (31), (34), (35a), and (35b), we can write
Eq. (30) as

w3

3 Z Alp; = py)

da Rk,

(36)

{ It is noted that we can also derive the moment equa-
tion (37) directly from the wave equation (8), using the
same technique in obtaining Eq. (22). Equation (37) thus
gives us a complete set of the moment equations of the
random wave field with different transverse coordinates
and different wavenumbers.

1V. APPLICATIONS

First we note that we have derived a complete set of
the moment equations with different transverse coordi-
nates and different wavenumbers for the high-frequency
waves propagating in a plasma medium. However, we
can easily extend the argument to the other cases when
the index of refraction € (r) has a different frequency
dependence.
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Next we consider some applications.
A. Identical wavenumbers

When all the wavenumbers are identical, Eq. (37)
becomes

31"

—=t "(z,p1 Oy PL 1 D))

i 1
=ﬁ(v§+"'+vfn 'Vl’z— oo -Véz) Fm.n—m

x(f) "EA(p, -p,)

{al g=l

- i i [A(p4 "'P}) +A(P§ - pi)]

§21 j=l

+5 5 a6 - o)) T, (38)
=1 j=1

which is identical to that obtained by Tatarskii.? How-
ever, the derivation by Tatarskii requires that the re-
fraction index fluctuations possess Gaussian statistics
while we do not require the assumption of Gaussian sta-
tistics in our derivation in general.

B-Fl,l (2,31,32}
When m =1, and n=1, Eq. (37) gives

ar
—a—lz‘-l'(z,plsklypz,kz)
_i (V2 vg) 1[(1 1)
_2(71 )17+ )40
2A(p, = p,)
7 L4 (39)

where T, (2, p,, ky, p,, B,) = ( ulz, py, ky)u*(2, p,, B,)).

Equation (39) can be used to calculate the mean inten-
sity profile (I(r,?)) at position r. Consider the random
wave observed by a detector with a bandwidth function
fg(k). Then we have the total observed wave amplitude
h(z,p,t) at position z, p and time ¢

hz,p, 1) = [ ulz, p, K)fy (k) explilkz - (R)t]} dR.  (40)

The average intensity profile is then

U(r, )y =(n(z, p, H*(z, p, 1))
= [ [z, p, ky)u* (2, p, o)) (o) ()
xexplil bz = w(k,)t]} exp{ =il b,z = w(k,)t]} dk,dk,.
(41)

Thus T, , is related to the average intensity profile
{(r, 9)) by Eq. (41). Equations (39) and (41) have been
applied to calculate the pulse profile of pulsar in inter-
stellar scintillation. The details will be given in a later
paper.
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When m =2, and n=2, Eq. (39) becomes
0
5112,2(2 S15 S25 S35 S4)
ifv: VZ V2 vz)
melt 2 24T
2(k1 ky kg Ry P
/1 1 1 1 Alp, —p,)
- A(0) + 2P —02)
o[ LR
Alps =p) _,Alp, =pg _,Alp; —p,)
+ - -2
2 k3k4 2 klkS k1k4
A(pz P3) Alp, - P4)
k k 2 k k 2 23 (42)

where
={u(z, sy)ulz, s,)u*(z, s)u*(z, s,)).

(43)

Fz,z(z, S1» S2 S3s S4)

If one sets s;=s,;, s,=S5,, and p, =p,, then
T,,2(2, 81, S35 S35 S4)
=(|ulz, p,, k) |?|ulz, py, B} | =z, py, k),
I(z, py, By)) =Pk, = k). (44)

Here I is the intensity and P, is the correlation function
of intensity at different frequencies. Thus T', , gives in
this special case the intensity correlation function

Pk, - k,) at a given observation point with different
wavenumbers. The intensity correlation function has
been measured in interstellar scintillations, %5:° and
Eq. (42) provides a theoretical base of interpretation.

ACKNOWLEDGMENTS-

I would like to thank Professor J.R. Jokipii for help-
ful suggestions and discussions, and Professor J.
Mathews for reading the manuscript and for his sugges~-
tions. This work has been supported, in part, by NASA
under Grant NGR-05-002-160 and by the National Science
Foundation under Grant GP-395-07,

y. 1 Tatarskli‘ Zh. Eksp. Teor. Fiz. 56, 2106 (1969)[Sov.
Phys. JETP 29, 1133(1969)]

V.1, Tatarsku “The Effects of the Turbulent Atmosphere on
Wave Propagation,” Israel Program for Scientific Translation
(1971).

3p A.G. Scheuer, Nature 218, 920 (1968),

‘E.E. Salpeter, Nature 221, 31 (1969).

K.R. Lang, Ap. J. 166, 1401 (1971).

SE. Hopf, J. Ratl. Mech. Anal. 1, 87 (1952).

"L.C. Lee and J.R. Jokipii, to be published (1974).

8y. Volterra, Theory of Functionals and of Integrval and In-
teg'ro—dszerentwl Equations (Blackie, London and Glasgow,
1930}.

9Ming Chen Wang and G. E. Uhlenbeck, in Selected Papers on
Noise and Stochastic Processes edited by N. Wax (Dover, New
York, 1954).

B, F. Rickett, Monthly Not. Roy. Astron. Soc. 150, 67 (1970),



On the automorphisms of real Lie algebras

G. Burdet, M. Perrin, and P. Sorba

Centre de Physiqgue Théoriqgue-C.N.R.S., 31 chemin J. Aiguier, 13274 Marseille Cedex 2, France
(Received 26 January 1973; revised manuscript received 10 April 1973)

We establish some properties of automorphisms of real Lie algebras, which in particular allow us to
construct the derivation algebra of a Lie algebra from the derivations of its radical. We apply this

construction to some familiar kinematical algebras.

1. INTRODUCTION

Up to now the notion of a group of automorphisms of
a finite dimensional Lie algebra has practically been
used mainly in the simple case of Abelian Lie algebras
for which the group of automorphisms is GI(n,R), where
n is the dimension of the real algebra. In the non-
Abelian case, two physically interesting examples are
well known with the groups of automorphisms of the
Poincaré' and the Galilei? algebras.

Let us add that the knowledge of the Lie algebra of
automorphisms, also called the derivation algebra,®
has been useful to classify, up to a conjugation, the sub-
algebras of a given Lie algebra,* and had led to build
a theorem on the derivations of the semidirect sum of
two Lie algebras % 0/, where % is Abelian and /
semi-simple, provided that the decomposition of % into
invariant subspaces under / is unique.

In this paper it is proposed to extend the above theo-
rem to the case of the semidirect sum 4 =£ O /, where
R is the radical, i.e., the maximal solvable Lie alge-
bra in 4, and / plays the role of a Levi’s factor. From
Levi’s theorem® any Lie algebra admits such a decom-
position and it will be shown how it is possible to con-
struct the derivations of O / using some well-defined
derivations of the radical, the action of these deriva-
tions being extended to the whole algebra.

To find out the group of derivations of a Lie algebra,
we could have used a pure cohomological approach
based on the structural theorem between cohomology
groups of G. Hochschild and J.P, Serre (Theorem 13
in Ref. 5). In particular this theorem shows that the
first cohomology group #*( A,A), namely the quotient
group of derivations by inner derivations, is essential-
ly made of some linear maps defined in the radical into
the whole algebra /# considered as a vector space A.
But these maps cannot in general be easily found. More-
over it is clear that the knowledge of the first cohomol-
ogy group does not give immediately neither the struc-
ture of the derivation algebra, nor the action of this
algebra on 4.

This paper is organized as follows:

Section II is devoted to some definitions and useful
lemmas we need for the following sections.

The two following sections deal with some properties
of A in connection with the automorphisms. In Sec. III
it is shown that the radical R is stable for all automor-
phisms of the whole algebra 4. This result is essential
and leads to the study of the derivations of A through
the derivations of f. The Levi’s factor does not possess
a so strong property. However / decomposes as
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[1® /[y with [ | acting “effectively” on R and / ;; com-
muting with £, and it can be proved (Sec. IV) that the
algebras 4;=R 0O/, and [ ,; are both stable for the con-
nected part Aut®(4) of the automorphisms of 4.

Section V emphasizes the role played by a particular
subgroup R, of the group of the inner automorphisms of
Ay It follows a fundamental relationship between
Aut®(#4,) and a subgroup G of Aut°(R). In Sec. VI this
subgroup G is fully characterized which allows to carry
out the construction of the derivation algebra.

To illustrate the practical applications of this theo-
rem, some relevant physical examples involving kine-
matical algebras are studied in Sec. VII.

In another paper® it has been shown how the notion of
derivation algebra can be used to increase an explicitly
time-dependent invariance algebra of a given quantum
mechanical system.

Il. PRELIMINARY PROPERTIES

All along this paper we are concerned with real Lie
algebras.

(A) Definition: Let A be a finite dimensional Lie
algebra and a an element of #; we call ideal relative
to a the subalgebra ¢, (a) constructed as follows: let us
consider the subalgebra [A:] obtained by closing under
the Lie product the vector subspace A} defined as:

A={a,| 3a’c A such that [¢’,a]=a,}=[A,d]
ifac[A,al,

A ={[4,alte{a with{a}={ra|rcR}
if ad [A4,al.

Then let us form [ 4,[A]]; two cases may appear:

(i) [A,[A]]c [A}] and [A}] furnishes the ideal relative
to a.

(i) [ A, [A11£[A2] then the subalgebra [A%] can be con-
structed on the vector subspace A? deduced from the
set:

{{as ol A, a1

and the iterative procedure will be stopped at the first
stage n for which

(A, lagl)c [az],
then ¢, (a) must be identified with [A7].

In the case of a simple algebra the following property
can be deduced.

Lemma: Let § be a simple algebra; then ¢ (s)=S for
any s€ (.

Copyright © 1974 American Institute of Physics 1436



1437 Burdet, Perrin, and Sorba: Automorphisms of real Lie algebras

Indeed the ideal y (s) being different from zero by
construction, can only be, in a simple algebra, the
whole algebra.

(B) Lemma: Let [ be a semisimple algebra; then
[£,1]#0 for any Ic /.

The proof of this property is obvious for a simple
algebra §, since the elements s § such that [s, §]=0
would form an ideal in §. We can deduce easily the
same property for / semisimple owing to the decom-
position of any semisimple algebra into a direct sum
of simple subalgebras.

(C) Let A4 be a Lie algebra defined as a semidirect
sum R 0o/ and B a proper subalgebra of 4 (8 #0). We
can define*:

Lz =/L0A and R; =RNA.

It can be easily seen that / , and R , are subalgebras

of A:
lL,.L,1¢c

and moreover
[L,.R,1CR,

which prove that
Rs 0L, CB.

I Ry OL,C B, we denote by /| , a complementary sub-
space of /\’B +LB in :

8=RH+LA+MB-

One can be easily convinced that any nonzero element

L,, (R, .R,ICR,

m; of /}j, can be written in an unique way as:
m;=v;+1,
with

7,€R, 7;€Rs, 7,#0,
Lel, L,&L,, L#0.

Let us denote by R!, (respectively, /’;) the subspace
spanned by the 7,’s (resp. I,’s), then the following prop-
erty can be shown:

[LB+L'/}’LB +L’B]QL3 +L’ﬂ’
i,e., that [, +Lf@ is a subalgebra of A.

(D) In the algebra 4 written as R O/ , the Levi’s
factor / being semisimple can be decomposed into a
direct sum of simple subalgebras:

L=&[,.
i=1

It is useful to remark that this sum can be settled as:

t=(8c) e (3, L) =LOLm,

with /;, i=1 ,k acting effectxvely on R, i.e., such
that [L,,R]#O andL,, j=k+1,...,n commuting with
R, i.e., such that [/,,R]=0.

It is worth noticing the following property:

Lemma: ¥ [ simple acts effectively on R, then
[, R]1#0 for each Ic/ .
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Pyroof: Let us consider the set
é = {loEL l[zoyR]:O}

this set is an ideal in / since for any 1/, I, £, the
Jacobi’s identity implies [[Z,,1],7]=0 for each rcR.

By hypothesis ¢ is different from / and thus can only
be zero. QED

(E) We recall here a property given in Ref. 7.

Lemma: Let o be a representation of a semisimple
Lie algebra / in a finite dimensional vector space V.
If W is an invariant subspace of V such that dimV
=dimW+1 and if ¢(]) VC W for all [/, then there
exists a vector ve V, v& W such that o(l) v=0 for all

le/.

II1. STABILITY OF THE RADICAL

Let A be a real finite dimensional Lie algebra which
can be written following the Levi’s decomposition as the
semidirect sum R O/ corresponding to a (nontrivial)
homomorphism from / into )(R) the derivation algebra
of R, where R is the radical, i.e., the maximal solv~
able ideal and / a Levi’s factor (semisimple subalgebra
by definition). Then:

Theorem 1: R is stable for each automorphism of A,
i.e., is a characteristic ideal of A.

Assume that there exists an automorphism o of 4 and
an element 7 of £ such that

olr)=1+»" withlec/, 1#0, and ' €, (1)

R being an ideal of A [4,R]CR and we have

[0(A4),0(R)] < o(R). But o(A)=A, by definition, and
it follows that

[£,0(R)]C o(R),

in particular,

[L,1+7]C o(R). )

Obviously, / being semisimple can be decomposed
into a direct sum of simple algebras /;:

n
L=®[,.
i=1
Then the element [ used in (1) can be decomposed as

=231, with,e/,.

1=
Let us choose in this sum [, [, [,#0, which is possi-
ble since [ #0.
The relation (2) ensures that
[L;t+7]< o(R).
Let us remark that
(L, 0+ )=1L,,1,+7].

Then, using the lemmas A and B, it is not difficult to
deduce that ¢, (I+7'), which is mcluded in o(R), con-
tains a subalgebra f3

B=L,+/, +R,
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such that
L, +L} =§’L,(lf)=£r

Therefore A is not solvable. But R solvable implies
a(R) solvable and then o(R) contains only solvable sub-
algebras, which contradicts the above result. So an
element [#0 cannot appear in (1) and for any automor-
phism o of 4 we have o{(R)CR. Since o(R) and R have
the same dimension, it follows that R is stable under
all the automorphisms of 4, hence is a characteristic
subalgebra of A4.!

IV. PROPERTIES OF THE LEVI'S FACTOR

Lemma: Let 7/ be the projection operator mapping
A on /[, considered as vector spaces, then 7700 is an
automorphism of / for any o automorphism of 4. In
particular 7y Oo0 is an inner automorphism of / if o
belongs to the connected part Aut®(4) of the
automorphisms of 4.

Let us define

o) =10 +p(), ®3)

with A(Z) e / and p(l) € R whenever I/ and o€ Aut(4).
By definition

[o(,), 00,)]=0({1,,1,]) for each pair [,,l,c/ .

This relation can be decomposed into the two following
ones:

2@, 2@ ))=2(1,, L), (4)
(A1), )1+ [p(), AN+ [0(1), pU) =1, L], (B)

Equation (4) together with the linearity property of x en-
sure us that A=7; O 0 is an homomorphism of /. From
Theorem 1 we can deduce that A is a one-to-one map-
ping, so that X is an automorphism of /.

In particular, if o belongs to the connected part of
the group of automorphisms of 4, it is easy to show,
by using the corresponding derivation, that A is a con-
nected automorphism of / , and thus an inner automor-
phism of /, since any connected automorphism of a
semisimple Lie algebra is an inner one.

Let us now decompose A as A= (R 0L ) ® /[, with
[ acting effectively on R ; we have then:

Lemma 2: The algebras R 0/ (=A; and [ ; are stable
for the connected part of the automorphisms of 4.
This property remains valid if /=0,

Let us first show that o(/ ;;)=/,, for any oc Aut°(A).

As [/, R]=0, and using also the result of the Theorem
1: o(R) =R we have

[o(L1p),0(R)]=[0(L 1), R]=0. 6)
Let us consider [, [ ;; and form

o(ly) =x(1,) +p(L).
Equation (6) allows us to write

[’\(lz)_‘-p(lz),/{]:O- (1)

Moreover we know, from Lemma 1, that if ¢ is a con~
nected automorphism of 4, X is an inner automorphism
of /, so that® (L) e /[ .

Then it follows from (7) that p(l,) e C(R). Thus we can
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deduce
[o(L 1)), 0(LD]C L 4o (8)
But / ;; being semisimple, [/ ,,/ 1]=/  and also
[G(L n),a(Lu)] :O(L n)- (9)

Together with (8), Eq. (9) implies 0(/ )=/, since
o(/ ¢y) and / 4 have the same dimension.

Consider now the action of 0 on A;=R& 0/ ;. We know
from Theorem 1 that ¢(R)=R. Moreover for any
1,/ ; we have
o(l,)=x(,) +p(1,),
with A(,) e [, for the reason already mentioned.?
Then one gets 0(R O/, )CRO/ and (RO /L )=R0/[,.

Let us mention that this proof is valid for /,=0.
In this case A=R&/, o(R)=R, and o(/)=/ for any
oc Aut® (4).

V. ROLE OF THE ALGEBRA R, = ((R)/C(A,)

Let R, be the Abelian subalgebra of the inner deriva-
tion algebra 9/ (A4,) of A generated from elements of

the center C(R) of R, namely Ro=("(R)/((A).

Lemma 3: The Lie subgroup R, of the inner automor-
phisms of 4 generated by the elements of £, is an
Abelian invariant subgroup in the group Aut({4) of the
automorphisms of #4.

Let w, be an inner automorphism of A4 generated by
Yo €R o} igs action on £ O/ is given by

w, M=1+[r,1l Viel,
VreR.

Consider now an automorphism o of 4 and form the
product o™* ow, O0. One sees immediately that

w, () =7

(0t ow, 00)r)=r wreR. (10

In order to study the action of this product on / we use
the decomposition (3) for o. It follows for o~:

o 1{D) = a"1(1) + p’ (1), (11)
such that
p’N+op)=0vlc/. (12)

A simple calculation gives
(@t ow, 00D =1+[0"(r,),1+p' (A(1)]
=1+[0(ry), 1] (13)

since 07}(r,) belongs to C (R) [C(R) characteristic sub-
algebra). Let us notice that, if o™{»,) €( (4), we ob-
tain the identity automorphism.

From Egs. (10) and (13) we deduce that
o Ow, O0=wrig, (14

which expresses that the w, ’s form an invariant sub-
group we shall denote R, in Aut(A).

Lemma 4: (a) Every nontrivial connected automor-
phism of 4,=R O/, which acts as the identity on R is
an inner automorphism Wy, of A, generated from an
element 7, of R,.
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(o) Two connected automorphisms of A, ¢ and o’
whose restrictions on R are identical, are R, equiva-
lent, i.e., there exists an automorphism Wy, generated
by an element 7, of R, such that

o=0’ Owro.

Let w be a connected automorphism of A;, w+#l, .
such that its restriction to R is the identity llR onR.
For any pair le /[, r€R, the relation

[W(l), W(’}’)] = M)([l, 1’])

becomes

[w@),r]=[1,7]. (15)
As previously, we consider the decomposition

w®)=x() +p(), (16)

where A(f)e [/ and p(l)eR.

In a first step, let us show that X must be the identity
on /. Assume that )\ﬂlLI; therefore [, € /[ exists such
that

Ml -1 #0.
Since
R
L =9 Li
i=1

with / ; simple, [; can be decomposed as

R
=2 atl, withl,e/,.

i=1

Then using Lemma 1 and Ref. 8, we can write

x(z,):i afa(l,) with 23, e /,.
i=1

In consequence

k
"(l’)'llz?;{ ai(A(,) - 1,)#0,

ensures us that there is at least one [, €/, (7, #0) such
that

AI) =1, #0.
Equations (15) and (16) written for [, lead to

@) -1,,7]1=[-p(,),r] for any reR.
Owing to Lemma D of Sec. II,

(x@) -1, R1#0.
Therefore p(l;)#0 and p(1,) £ ((R).

Let us then consider the set

Lo={l,eL,|a7r,€R s.t.[1y,7]=[r,,v]¥reR}.

It is easy to prove by repeated use of the Jacobi’s
identity that / , is an ideal in /,, and that, if 7, cor-
responds to [,/ ,, then [1,7,] corresponds to [1,1,] for
any !/ ,. Moreover one can verify, owing to the
Lemma D, that [/, is isomorphic to a subalgebra of
R/C(R). But [, simple cannot contain solvable ideal
other than zero; hence /[, is zero and X cannot be dif-
ferent from llLI. Thus Eq. (15) becomes

[t+p(),r]1=[1,7] for any rcR,
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which implies p(1) e (R).

From Theorem 1 we know that the restriction of w to
R, denoted w/R, belongs to Aut’(R); but ("(R) is a
characteristic subalgebra of R,! thus w/( (R) belongs
to Aut°(C' (R)). Consequently we can consider the semi-
direct sum (" (R) 0 L and deduce:

w/C(R) 0L € Aut(C(R)OL ).

Consider now
w({, ] =[w(@), w(@")] for any pair I,I'e /,. a7
Using the specific form of w, Eq. (17) becomes
e[t D =[2,p@N]+ 0@, r].

This relation is a 1~-cocycle equation and also a 1-
coboundary since [, is semisimple. So that, there
exists € (R) such that

pW)=lr,,1l, 1e/;,
and

wl)=1+[r,,1].
It follows that every connected automorphism of A,

which reduce to the identity on R is an inner automor-
phism of A, generated by an element of £,.

To prove the part (b) let us first note that, if o, and
0, are two automorphisms of 4, then:

°1|R002,R=0100'2/R° (18)

Consider now the two connected automorphisms o and
¢’ whose restrictions on R are identical. It is easy to
go back to (a) by setting
A=0"100
which verifies, following (18), the relation:
%/R=0"Y/Ro0/R =lo.
Therefore there exists w,., Yo€ER,, Such that
o't oo=w,. (19)

Since, from Lemma 3, R, is an invariant subgroup of
Aut( 4), the relation (19) defines the R, equivalence of
o and o',

From these two lemmas we deduce:

Theorem 2: The quotient group Aut®(4,)/R, is isomor-
phic to a subgroup G of Aut’(R).

The property given in Lemma 3 allows to consider the
quotient group Aut°( A,)/R, which is, according to
Lemma 4, in a one-to-one correspondence ¢ with a sub-
set of Aut°(R). Note that ¢ maps any class Ge Aut®( 4,;)/
R, on the automorphism ¢/R, restriction to £ of any
element of ©. Using the simple property given in Eq.
(18) we can deduce that ¢ is an isomorphism of
Aut®(A;)/R, onto a subgroup G of Aut°(R).

V1. CONSTRUCTION OF THE DERIVATION ALGEBRA®

Let g be the Lie algebra of the group G defined in
Theorem 2, we have:

Theorem 3: The algebra g can be decomposed into
two parts:

(i) The subalgebra Z: which corresponds to the action

of [yon R in A,.
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(ii) The subalgebra /) which contains all the elements
d of )(R) such that [d,/ ;] CR, where R, the algebra of
the inner derivations of { R =R/C(R)) is an ideal in
0. Moreover a basis in /) can be chosen such that any
element of this basis is either an inner derivation, or
an outer derivation d’ satisfying [d", / J=0. Hence ¢
can be written as the semidirect sum ¢ =/ 0O/ where
[) is not in general a solvable Lie algebra.

It is easily seen first, that ZI can be identified with
[ ; and also that the algebra /) (A;) of inner derivations
of A; isomorphie to the quotient R T/ ,/C(R O/,) exists
in G modulo the Lie algebra R,. This result can be

written: ¢/) (AD/Re=R O ZI'

Consider now d eg , d belonging to a complementary
subspace of 4, in the vector space §. We shall show
that [d, LI] C R Indeed to the element d corresponds
the class d in ) (A)/Ro: d=d+R,, dc)(A,). We know
that [4,90(AP1< 9D (Ap. But, more precisely, let
d, be the element of (QD( A corresponding to the ele-
ment /e [ ;. From the choice of d in §/, and using
Lemma 1 it can be deduced that d(I') R for any ' e [,
Then remembering that the inner derivation d, acts on
a’ as:

d(a')=[a,a’]
and using the elementary properties of the derivations:
[d, dx](a') = d(d; (a')) -d, (d(a))

one deduces the action of the derivation [d,d,] on any
element a'c A,, one gets

[d; dl](a’) = d([ly a']) - [l, d; (al)]
=[a@®, ']

and since d(l)eR, [d,d,] can therefore be identified
with an inner derivation corresponding to an element
of R. Going back to ¢/, we easily deduce that

[d, /1] CR. (20)

Conversely it is possible to prove that any outer
derivation d of R verifying (20) is an element of G

Let us show that to any such outer derivation dof R,
such that [d; L1#0, canbe associated another outer
derivation 4’ which differs from d by an inner deriva-
tion d, and satisfying

[d", [ J]=o0. (1)

Indeed, respectively, to each d defined above, one can
associate the subalgebra /); of the derivation algebra
D(R) of R, which is generated by d and all the inner
derivations of £ . Noting that A form an ideal in ) (R),
one can write

[d,R1CR. ©22)

Equations (20) and (22) allow us to consider the follow-
ing semidirect sum, subalgebra of HD{(R): N;0/,. It is
then interesting to notice that, from the definition of a
semidirect sum, /);—considered as vector space—is
the representation space for the representation o of

[ ; associated with the semidirect sum J;0/,;. We are
then in the conditions of Lemma E (/) ; playing the role
of V and A the role of W). In consequence, there exists
a vector d’ €/);, d' ¢ R such that
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@' =d+d, with d cR (23)
and
(oL @)=L, a]=0.

Now let us show that any such ar belongs to g . In-
deed, one can extend the action of &’ on the whole alge-
bra A, by setting

d'(r)=d'(r) for any reR,

(@) =0 (24)

for any Ie/,.
Then, d’ so defined, is a derivation of Ay from its
definition (24) we have just to verify its action on a Lie
bracket [1,7], where Ic [, reR,

([, )=aod = 0dW=doat)=doa),
and also
a' (1, v =[1,a ().

Taking into account the action of d’ on Ly, this last
relation ensures that d’ is a derivation of As-

Moreover it is easy to see that d’ belongs to the class
of )(Ap/R, which corresponds to d’ by the isomor-
phism ¢ defined in Sec. IV. Therefore d’ is an ele-
ment of g and this holds‘ for any d satisfying (20) since
in the relation (23) and d, is in g.

The algebra 0 (A )

It is easy now to determine /) (4,) from the know-
ledge of g . Indeed the subalgebra of inner derivations
gy(,q,) is a priovi known 9P (A= A/C(Ay) and we
have just to study the Lie brackets involving outer
derivations,

This can be achieved by remembering (proof of Theo-
rem 3) that any d’ €@ such that [d’, /]=0 can be extend-
ed into a derivation 4’ on 4, the action of which is
given by Eq. (24). Thus, the action of all the elements
of a basis in )(A,) is known, hence the action of the
general element in /) ( Ay) is also known, which fully
characterizes the derivation algebra since, by defini-
tion, for any pair of derivations d, and d, we have

[d,,d,)(@) =d, 0dy(a) - d, 0 d(a), acA,.

Finally from the property stated in Lemma 2, we deduce
the whole algebra

D (74)=0(741)@0(Ln).
We recall that ) (/)™ L1, Ly being semisimple.

VII. APPLICATIONS TO LIE ALGEBRAS OF PHYSICAL
INTEREST

In order to illustrate the above results we study the
derivation algebras of some physically relevant Lie
algebras. More precisely, we shall pick up examples
among kinematical invariance Lie algebras which are
endomorphisms of space—time or phase space.

In practice, the knowledge of the derivations of the
radical £ is not necessary. Indeed, /) (R) is a sub-
algebra of GI(n, R) (n=dimAK) and it is sufficient first
to determine the generators of §I(z, R) which commute
with those corresponding to the action of the semisimple
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part / on R, and then to select among these elements
those which are derivations of &, This can be achieved
by using a nxn matricial representation of Gl(n, R).

A, Algebras of the mreegiimensional Euclidian grbup
E(3) and of the Poincare group P

These two examples can be {reated by the theorem
of the Appendix B of the Ref. 4 already mentioned in
the introduction, Indeed, these two algebras can be
written £(3)= ¥ (3) 0 SO(3) and P = 9 (4) 0 SO(3,1),
respectively, and ¥(3) [respectively, #(4)]is an ir-
reducible vector space under SO{3) [resp. SO(3,1)].

To use our method, first for the Euclidean algebra
&£(3), we note that the radical % (3) is Abelian and there-
fore its derivation algebra, which contain only outer
derivations is isomorphic to G1(3, R). Hence we have to
select in the algebra of GL(3, R) the generators which
commute with those of the algebra S&B‘) corresponding
by construction to the action on ¥ (3) in the semidirect
sum A(3)0 SO(3). After calculations we find there
exists only one such generator which acts as a dilatation
on ¥ (3). In consequence the derivation algebra can be
written

MEBN =A,B3)T(S0,B)0R,).

In the same way, it is easy to see there exists only one
generator in G 1(4, R) which commutes with the genera-
tors of SO(3,1) and that this generator still acts as a

dilatation on 9 {4). So we obtain the well-known result!

D(P)=A4) o (S0B.1)8R,).

B. Aigebra of the isochronous Galilei group G’

This algebra which is the derived Galilei group alge~
bra, can be written

G'=(u,(3)® %,(3) 0 S0, ().

Although the solvable part ¥ is Abelian, the theorem of
Ref. 4 cannot be applied, the decomposition of ¥ into
irreducible subspaces under SO(3) being not unique
(more precisely, the three-dimensional vector repre-
sentation appears with the multiplicity two). But from
the point of view of our technic we are in the same situ-
ation as in Sec. VII A, We have to exhibit in the deriva-
tion algebra of ¥ isomorphic {6, R}, the maximal
subalgebra of the form /) & 0,(3), where SO,(3) still
corresponds to the action on 9 »(3) ® ¥ ,(3) in the semi-
direct sum (¥ 4(3) ® % ,(3))0 SO,(3). A simple calcula-
tion permits to show that /) is isomorphic to GI(2, R).
Hence the derivation algebra of (' is

(G =(4,B3) @ %,B)NCE0,B3)eG12, R).

We shall give more details about this algebra in the
Sec. VIID.

C. Algebra of the Galilei group G

G =(u,0) ¥, (3) 0% ,(1)T50,(3).

The solvable part is no more Abelian. Its derivation
algebra is a subalgebra of G I(7, R) and in this subalge-
bra there exist two generators, denoted D, and D,,
which commute with SO(3) and which correspond to
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dilatations on the generators P,K,H, Thus )(G) can
be decomposed as®:

D(G)=(%,(3) 0¥ (8)0 %, (1)) (50,(3) ORp R p,)
and we have the following commutation relations:
(D, H]=2H, [D,H]=0,
D,k 1=~K,, [D,K,]=K,, (j=1,2,3)

25
[Dl’PJ]:'P!’ [Dz,P;]:Pp (25)

[D,,D,]=0.

D. Algebra of the extended isochronous Galilei group G'

To apply our method we consider this algebra written
under the form

Gr=(u,) e %00 ¥,6)080,03).

The solvable part is the Heisenberg algebra /# of which
the derivations are well known.

D) =(%,(3) & % (3N (Sp(6, R) &R ).

The SO(3) is contained into the symplectic algebra
Sp(6, R) and the generators of J{#) which commute
with the {0(?) form a subalgebra isomorphic to

G 1(2, R). This algebra was already encountered in Sec.
VIIB where its action was limited on % ,(3) ® % ,(3).
We can the write:

DG=(%,(3) 8 ¥ B3)0(50,6) BG 12, R)).

1t is interesting to decompose (2, R) into the direct
sum:

GUe2, R)=5U(1,1) ®R

which makes appear the Schrﬁdinger algebra §1° de~
fined as the largest algebra which leaves invariant the
free Schridinger equation:

S=%,3) o %,3)050,3)®sUQ1,1).

This algebra contains the Galilei algebra and the gene-
rator H also belongs to the SU(1,1) algebra of which the
two other generators are the dilatation D, and the “ex-
pansion” C. The new generators satisfy the following
commutation relations:

{C!Pj}=Kj9 {CQK_J:Ox
[Cij]=09 [C:H]=Du
[c,p]l=2¢, [c,Dp,]=0.

The other commutation relations are identical to the
relations (25). So, we have established that the
Schrodinger algebra is the derivation algebra of the
extended Galilei group, up to a dilatation which acts
on the mass. It may be interesting to notice that:

(i) The SU(1,1) algebra which appears above is in fact
the Sp(2, R) algebra which subsists in O(#) if we con-
sider only a one-dimensional space.

(i1) It is easy to convince himself that following our
technics and by its construction the Schrddinger algebra
is complete, i.e., it has no center and no outer
derivations.
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E. Algebra of the extended Galilei group G

C=(¥,)® %,0)® ¥,B3)0 % ,(3))050,03).
This case differs from the case of the Galilei algebra
by the appearance of a supplementarNy generator z, the
automorphisms o, of which act on G as

0, H)=H+aM,

0, (x)=x, for any xe?’.

z commutes with all inner derivations, but with the two
dilatations we have the following commutation relations:
[D,,z]==-22z, [D,,z]=2z.
Hence the derivation algebra of 'gv can be written
D@ =(ID(G) BRI Rp, OR p,)-
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A method developed in two previous papers is used to derive a double spectral representation with

Mandelstam boundary for the pentagon diagram amplitude for the production process4 B> CD N.
Restrictions on the masses and kinematic invariants for which this representation is valid are found
and it is discussed how a representation can be obtained for wider ranges of these variables. Finally,

a comparison is made with the results of other authors.

1. INTRODUCTION

Different aspects of the properties of the pentagon
diagram amplitude or five-point function have been dis-
cussed by a number of authors. Cutkosky used the
Landau—Cutkosky rules!'? to show that, unlike the
leading singularities of the triangle and box diagram
amplitudes, the leading singularity of the pentagon dia-
gram amplitude is not a branch point. The discontinuity
associated with this singularity, as calculated by the
Cutkosky rules, is a delta function.® Cook and Tarski*
made a detailed study of the leading Landau curve of the
pentagon diagram amplitude and determined the singular
points of this amplitude for several specific processes.
A reduction formula expressing the pentagon diagram
amplitude in terms of five box daigram amplitudes was
obtained by Halpern. ®

The pentagon diagram amplitude has also been studied
with a view to writing it as a double spectral represen-
tation, for a restricted range of masses and kinematic
invariants, by Zav’yalov and Pavlov.® Their analysis
however contains a number of errors. In particular, the
double spectral representation obtained by them [Eq.
(23) of Ref. 6] is divergent, that is, infinity is obtained
when the integration is carried out. Further, the prop-
erties of the roots of the quadratic equation yielding the
leading Landau curve of the pentagon diagram amplitude
are more complicated than indicated in Ref. 6. The
roots can under certain circumstances becomes complex
and this is another reason why their spectral represen-
tation is incorrect.

In this paper we extend a method used in two previous
papers, Ref. T (referred to as VF) and Ref. 8 (referred
to as I), to obtain a double spectral representation for
the pentagon diagram amplitude, for a restricted range
of masses and kinematic invariants. (Equations from I
will be denoted by placing an I- in front of the equation
number).

In Sec. 2, the pentagon diagram amplitude associated
with the pentagon diagram in Fig. 1 is transformed
from its Feynman parametrized form into a more con-
venient form and the restrictions made on the values of
the masses and kinematic invariants are discussed. The
boundary of the region of integration in the quadruple
integral obtained in Sec. 2 is studied in Sec. 3 and in
Sec. 4 we obtain some results necessary for reversing
the order of integration.

The order of integration is reversed in Sec. 5 and a
triple integral representation is obtained. In Sec. 6 the
boundary of the region of integration in the triple inte-
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gral is studied and in Sec. 7 results necessary for re-
versing the order of integration are obtained. Finally,
in Sec. 8 the order of integration is reversed and an
integration is carried out to obtain a double spectral
representation in s and ¢ for the pentagon diagram am-
plitude. We also note in Sec. 8 that one of the inte-
grations can be carried out to obtain a single dispersion
relation in s and in principle the method of Ref, 9 (re-
ferred to as II) can be used to obtain a representation
for the pentagon diagram amplitude for general physical
invariants. Using this method it should be possible to
determine directly how and when complex triangle, box,
and pentagon singularities occur, resulting in a break-
down of even a single dispersion integral over a real
domain.

2. TRANSFORMATION OF THE PENTAGON
DIAGRAM AMPLITUDE

With plane wave states normalized so that {p’ |p)
=8 (p — p) we define the scalar invariant production
amplitude P(s,, s,, S;, S, S5 for the process AB— CDN
in terms of the S-operator by

FIG. 1. Pentagon amplitude for the production process
AB-—CDN.

Copyright © 1974 American Institute of Physics 1443
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<pCprN lSI pA PB>
==i (2016 @(po+bp+ Py by = bp) (27) 15/
X(2E, )2 (2B ) /2 (2E )™/ (2E )2 (2B )7 /2
XP(Sp sz) 33’ 34) 35)’ (1)

where 31=(P4-+P3)2, sz=(p,4 "pc)zy saz(pg_pp)zs Sy
=(pp+PyP, ss=(bo+p,) are five independent kinematic
invariants. (The notation has been chosen so that the
results of I can be applied without the need to relabel the
variables. ) Then, using standard Feynman rules! and
the Feynman identity, we find that the amplitude arising
from the pentagon diagram of Fig. 1 takes the form

Pnent.(sl’ 82, sa’ 84, 35)
== (g/64TPEFGH) I(%,, X,, %3, X4 X5), (2)

where, writing I(x,) for I(x,, x,, %4, %,, %),

I(x,)=-4EFGH [, da ["* ap [ ay [ as
X[E*aq+ F*8+G*(1-a—-B~y—-05)+Hy+K2
~A%(1-a-f-y-0)a=BY1-a-p-y-0)B
- C®ay - D86 - N?y6 - 5,aB - s,(1-a - B-y -6y

-sg{l-a—-B-y=05)5 sBy—s,ab]™. (3)

In Eq. (3), the s, are to be expressed in terms of the
new variables x; or X, defined by

%, =-X,=(2EF)* (s, - E* - F?),
%y==X,=(2GH) (s, - G* - H?),
%y =—X,=(2GK)™" (84 ~ G* ~ K?),
%,==-X,=(2FH) (s, - F* - H?),
%y=—X,=(2EK)™ (s, - E* - K?). (4)

We shall find it convenient to use both the quantities x,
and X, (i=1,...,5) in the following. The factor g in Eq.

(2) is given by £=8,£c&prc Ecen&prx& vk WHETE &4p0,
- »& yux are the usual rationalized coupling constants.

We begin by generalizing the transformation used in I.
The change of variables is

r=(a+B)y(1-a-B-y=0), p=(a+p)y,
¢=(a+p)s, v=g*a+p),
with the inverse
a=vi{v-1)1+rx+p+)?, B=v{1+r+p+g)?,
y=p(Q+r+p+2) s=g1+n+pu+)t
The Jacobian of the transformation is given by
la(a, B,7,8)/0(0, 4, v, O)| =1+ X+ p+g)°v?
and we find that
1(x,)=-4EFcho‘°dgfo'°d;4f0°dxfo“’du(1+x+u+g)u-2
X[E2v v-1)1+r+p+ O+ Fril+r+u+¢)
+GNI+FA+ pu+ )+ Hu(l+A+pu+0)
+K (1 +A+ pnt+ )
-AHv Y (v-1)-BAvi-CPuriv-1) =Dyt - Nug

- 8,03 (v=1) = s Al = SAL = .07 — s (v - 1)¢]°
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=2EFGH/ ﬂf duf d)\‘/wdv.
0 g 0 V] 1

X 52z (1= )OO, 1, )+ YA, 1, ) = ¥ (v = Dolx)]?,

(5)

where
SN, 1, £) =GN %+ H2u® + K2¢% + 2GHX A b + 2GKX M ¢
+2HKeput +2EGar +2EHcp + 2EKX £ + E?,

(6)
A, 1, £)=GN2+ H2u2 + K2£% 4+ 2GHX A\ 4 + 2GKX N ¢

+ 2HKep + 2FGbX + 2FHX i + 2FKdg+ F2, ()
v(x,)=2EFx, + E? + F2, (8)

The constants A2, B2, C2, D%, N? have been expressed in
terms of a, b, ¢, d, e defined by

2EGa=E%*+ G?-A% 2FGb=F?+G?-B?,

2EHc=E?+H?*-C? 2FKd=F%+K?-D?

2HKe =H®+ K? - N?, 9
and we have also used Eq. (4).

To simplify the proof of a spectral representation we
restrict the quantities defined in Eqs. (4) and (9) as
follows:

a,b,c,d,e>0, X,>0 (i=1,...,5). (10)

Equation (10) ensures that ¢(\, p, £)>0, ¥(r, i, £) >0 for
A=20, u=0, £=0; in fact the term in square brackets in
Eq. (5) is always positive and I(x,) is well defined.
While Eq. (10) can be satisfied with physical invariants
by choosing the internal masses sufficiently large, the
restrictions on X; mean that the amplitude we are con-
sidering does not in general correspond to a physical
process since for the physical amplitude associated with
the pentagon diagram in Fig. 1X,, X,, and X; would in
general be negative. However, from the form of I(x,) we
see that a spectral representation cannot in general be
proved for negative X,, X,, and X, using real analysis
only. One way of obtaining the physical amplitude would
be to start with the spectral representation for the un-
physical amplitude [Eq. (65)] and do an analytic contin-
uation in X,, X,, and X; using, for example, a general-
ization of the method used in II. We discuss this problem
further in Sec. 8.

The argument leading to Eqs. (I-19) and (I-20) can now
be used to show that

[ [T
w=tma [ T %

2 fraf" Ll
i ax,,[ X LM,,) (E=x)UE N, 1, ]2 7

(11)

where
U(E’ hr M, §)= (E - h(xy K, ;)) (E - k(xv ) g))’

O 91 -1
k()\, “‘-" g)}—(ZEI“) {["[(b(xy “, §)i‘[¢()\y M, g)]z—Ez _F‘z}zls)

(12)
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and (A, p, £), P(A, 1, t) are given by Egs. (6), (7).

3. STUDY OF A\ %)

To reverse the order of integration in Eq. (11) we
need to examine the function k(, i, £) for A =0, p =0,
£=0. As in Sec. 4 of I (or of VF) we write

(A, 1, ) =D 02+ 2¢,(1, DA+ 7y(K, B),
YN, By £) =DA% + 245 (1, O+ 7K, £), (14)
where )
b, =G,
q,(k, £)=G(HX,\ +KX, L + Ea),
v, §) =H?u? + K*¢® + 2HKept + 2EHe u + 2EKX, ¢ + E?,
q,(1, §) = GHX ) + KX, + Fb),
(1, ) =H?p® + K?¢? + 2HKep ¢ + 2FHX ,u + 2FKd¢ + F2.

(15)

Then the argument of Sec. 4 of I (or of VF) shows that
for fixed p =0, £20, k() 4, £) increases strictly from
O, u, &) to + © as x increases from 0 to + «, whenever
(0, 1, £) 0. Now '

(0, k, &) =(EF)™* (Vry(, ©) + Vrilu, &) Lk, &),  (16)

where

L, £)=[a,(u, )/Vr (1, O+ (g n, &)/ (L, D] (17)

Thus, when Eq. (10) holds, it follows from Egs. (15),
(17), and (16) that for fixed p =0, ¢=0, k(A u, £) in-
creases strictly from #(0, u, ¢) to + © as X increases
from 0 to + =, Similarly, for fixed A=>0, £>20, k(x, 4, &)
increases strictly from s(:, 0, ¢) to + © as u increases
from 0 to + « and for fixed u =0, ¢=0, h(x, u, ¢) in-
creases strictly from a(x, y,0) to + « as £ increases
from 0 to + .

4. SOLUTIONS OF U(¢ A 1.,8)=0

In this section we study the behavior of the zeros of
U(E,\, u, §) first when £, 4 and ¢ are held fixed, then
when £, 1, and ¢ are held fixed and finally when £, A, and
u are held fixed, From Eqs. (12), (13), (6), and (7) we
have

4EF2U(E, N, 1, £) = a,(EN2 + 2b,(&, 1, O+ ¢4(&, 1, £)
= ay(E)u® + 2b,(&, X, D) + cp(E, 0, 8)
=ay(E) %+ 2b4(E, \, L)L+ c5(E, 1, 1), (18)

where

ag(£) =4G*[(Ea - Fb)? - v(£)],

ay(£) = 4H*[(Ec - FX,)* - v(£)],

ay(£) =4K*[(EX, ~ Fd)* - v(¢)],

bi(E, 1, £)=B(E, = Xp)u + y(&, - X )6 + by,

b,(E, X, £)=B(E, = XA+ B(E, —e) + by,

ba(E, X, ) =7(E, = XN+ 8(E, — )L+ by,

B(&, — X,)=4GH[(Ea - Fb)(Ec - FX,) - X, v(£)],

y(&, — X;)=4GK[(Ea - Fb)(EX, - Fd) - X, v(£)),
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5(k, — ) =4HK[(Ec - FX )(EX, - Fd) — e ()],
b,=b,(£,0,0)=2G[(Ea— Fb)(E? - F?) - (Ea+ Fb)u(§)],

b, =b,(£,0, 0)=2H[(Ec — FX,(E? - F?) - (Ec + FX )u(§)],
b, =by(£, 0, 0) = 2K[(EX, ~ FA(E? - F*) - (EX, + Fd)v(£)],

(19)
and v(t) is given in Eq. (8).

The quantities ¢,(£, 4, £), €x(& X, £), cy(E, 2, p) are
determined from Eq. (18) by putting A, u, ¢, respec-
tively, equal to zero and using in addition Eq. (19) and
the fact that

ey(£,0,0)=c,(£,0,0)=cy(£,0,0)=4E2F*(£2 - 1). (20)

The argument of Sec. 5 of VF (see also Sec. 5 of I)
shows that for each £ = A(0, u, £), where 1 and ¢ are
fixed and =0, the quadratic equation in A

U(E’ A, By, L'):O

has two real roots given by

Ny 1y )= [ay ()= By(E, 1y ) F {0y, 1, OF
- ay(E)ey (&, 1, DF/?). (21)
From Eqs. (19), (13), (14), and (15) we see that
by(r(0, i, £), K, )
== 4[Vr (i, &) + Vri(u, O] Vo, O Vi, Ok, ©),
(22)

where I,(1, ¢) is given in Eq. (17). Since I,(u, £) >0 when
Eq. (10) holds it follows that A (k(0, 4, &), u, &)
=0#x(1(0, p, £), 4, £) and in fact A, (£, y, £) is the in-
verse of the strictly increasing function (), u, £) on

0 sx <, Thus A (&, i, £) increases strictly from 0 to

+ » as ¢ increases from (0, u,¢) to + «. Similarly for
each £ 2 h(), 0, £), where X and ¢ are fixed and =0, the
quadratic equation in p

U(nyy K, g)ZO

has two real roots, u,(£, 2, ¢ given by the right-hand
side of Eq. (21) with p —~X, 1—2. The root u (2, ¢) is
the inverse of the strictly increasing function a(x, u, &)
on 0 <<, Further, for each £ =h(x, u, 0), where X
and pu are fixed and =0, the quadratic equation in ¢

U(E, A, 1, £)=0
has two real roots, {,(£,X, 1) given by the right-hand
side of Eq. (21) with u —x, £—u, 1—3. Again £ (&, i)

is the inverse of the strictly increasing function a(x, u, &)
on 0 sg<oo,

5. REVERSAL OF ORDER OF INTEGRATION

Since Eq. (10) holds, we showed in Sec. 3 that
h(0, u, £)>0 for all u =0, ¢=0 and so from Sec. 4,
N (&, 1, £) is the inverse of the strictly increasing func-
tion h(\, 4, L) on 0 sa < o for each u =0, ¢£>0. Thus
Eq. (11) can be written

_ im0 [Tde [Tan
I(x) =2EF lim 77 A g,[ u

©

X lim 2 dt

A, 6, 1, O), (23)
810 9%, Juo,u,00 £— %1
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where

AME, 6,1, 0)

g, 0,0 dr
“,/; Aa,(EWZ +2b,(E, 1, OX + cy(E, 41, DI TE
(29)

Note that h(5, 1, £), b,(%, i, ), A (&, 1, £), and A(, 8, u, &)
depend on x,.

Now since for fixed ¢ 20, u,(£,0,¢) is the inverse of
the strictly increasing function 2(0, u, ) on 0 <p < =,
the argument of Sec. 6 of I can be used to show that

I 2 (Tat (T dt
f(xc)—léi}gla—lg[ 7 j’;o,o'u F-x, X(&, 0), (25)
where
_ 16EFGHu(t) ('  du(li®-m)
& D= Tz, 0, 0P 72 [ (? = my* + 4ms® (26)

Here
I=[1(E,0, )] by(E, n(E,0,0), )
m=[(£0, )] b,(&, 1(£0,0), 0)
n==ay(£)cy(£, 0, )] {[ba(£, 0, OF - ax(£)cy(£, 0, O)}.

(27
Since from Eq. (18) ¢,(£,0, £)=¢,(£, 0, £), we have
m —n=[c,(%, 0, )] ([G(&, x5, )
= {[B,(£,0, O)F = ay(£)cy(&, 0, D)}
x{[by(£, 0, D) = ay(£)cy(, 0, O
=[ey(E, 0, O F(E, x5, £), (28)
where
G(E, %5, £) == [B(&, ,)c5(£, 0, £) = by(£, 0, D),(£, 0, 1)),
(29)
and

F(E, %3 )= (B(E, %) F eE, 0, £) = 28(E, %)0,(5, 0, D)b(£, 0, £)
+[B,(£,0, OF ay(£) + [b,(£, 0, O F a,(&) = a;(E)ay(£)c,(, 0, £)
=16G?H*[v(8) P cy(£, 0, Olx, - £, D)%, -, ). (30)
Here
Fu(&, ©)=[4GH v(£)c,(£, 0, £)]™ (- 4GH c,(&, O, L)(Ea ~ Fb)
x(Ec=FX)+b,(£,0, £)b,(£, 0, ©) 2 {[6,(£,0, O)F

- a,(E)ey(§, 0, P2

x{[ba(£, 0, ) - ay(E)ey(£, 0, O)F /%)
and the argument of Sec. 5 of I (or of VF) shows that

[6,(,0, O)F - a,(£)e,(£,0,£) >0,

(31)

(32)
[05(£, 0, £)F = an(£)cy(£, 0, £) >0,
for &= 10,0, £). Further since ¢,(£,0, £)> 0 for
£> h(0,0, ¢) it follows from Sec. 6 of I that
_ - & . (a3
X(&, £)=8EFGH u(¢) (- xNF(E, 0, O} (33)

£ 06D
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Note that
F(&, x,, 0) = 64E*F*G?H?[v(§) F F(£, x,),

where F(¢, x,) is given in Eq. (Al) (and in Eq. (I-12)
with n = x,, d—~X,).

(34)

Now since, as shown in Sec. 4, ¢,(,0,0) is the in-
verse of the strictly increasing function #(0, 0, £) on
0 <¢ <~ we find on inserting Eq. (33) into Eq. (25) and
reversing the order of the ¢ and ¢ integrations that

24.(2,0,00 dc

dE a¢
¢

I(x)—lim—?—"f”‘
i €10 aKzA 20,0,6) .g-—xl A

xj“" dn _ 8EFGHw(E)
) e M=% [FCE, M, OF

Note that k(0,0,¢€), £,(,0,0), and F(£,7, £) depend on K?
through Egs. (4) and (9).

(35)

6. STUDY OF f,(£.8)

To reverse the order of the ¢ and 7 integrations in
Eq. (35), we need to examine the function f,(£, ¢) for
£=1, 0<g=<¢g(¢0,0). First we examine the behavior
of f,(£,¢) as £ 4 £,(£,0,0) with £ fixed and =1. We showed
in Sec. 3 that when Eq. (10) holds, [,(0, £)> 0 and thus
from Eq. (22)

b,(£,0, £,(£,0,0)) <0. (36)
Similarly

by(£, 0, £,(£,0,0)) <0 (37
and hence from Eqs. (18) and (31) and the fact that

v(£)>0 (38)

for £ >1 it follows that f,(&, £)—~+ < as £+ ¢£,(£0,0).

Next, from Eq. (31) we see that the derivative of
f.(&, £) with respect to ¢ is

FoelEs ©)=[4GH v(£)][ey(£, 0, )]
X (= by(£, 0, O){[By(£, 0, OF - ay(£)cs(£, 0, DI ?
= b,(£, 0, O){[5,(£, 0, ©)F - a,(£)ey(£, 0, D)F/2)
XL(E, £), (39)
where
L(&, £)=[Q(&, &)/VR(E, O]+ Q' (&, )/VR'(E, D],
QUE, £)= tash, = vby) + (bb, - vey),
@ (&, &)= tlazh, - 6b,) + (byb, = bc,),
R(E, £)=%(y® = aga,) + 2£(yD, — a,b5) + b3 ~ a,cy,
R/ (&, £) = L3(8% - aga,) + 2£(8b, = a,b,) + b} — ayc,.  (41)

In Eq. (41) g, has been written for a,(%), ¢, for ¢,(¢,0,0),
y for y(¢, - X,) etc. where these quantities are defined

in Egs. (19) and (20), From Eq. (36) together with the
facts that b, =b,(£, 0, 0)< 0 when Eq. (10) holds and

b,(&, 0, £) is linear in ¢ it follows that

(40)

b,(§0,¢)<0 (42)
for all 0 € ¢ <¢ (&, 0,0). Similarly
b,(§,0,£5)<0, (43)
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for all 0 ¢ <¢,(&,0,0). Thus the term in boldface pa-
rentheses in Eq. (39) is always positive and f, (£, £)
vanishes if and only if L(£, £) vanishes.

Now
(b2 — agc) R(E, £)=Q%(E, £) = co(£, 0, £) ColE, = X,),
(blzi - aSCS)RI(E) g):Q’z(g, g) - Cg(&; 0, ;) Cs(gy - e);

(44)
where (b2 - g,c,) >0 for £21,
Calls = X3) = C4(y* - a,a5) + blay + bla, — 2yb by,
CylE, = e)=c4(5% = aya,) + bZa, + bla, - 255,b,, (45)

and ¢,(£,0,¢£) >0 for £>1, 0s¢<¢,(£,0,0). In Egs. (44)
and (45) the abbreviations described after Eq. (41) have
again been used. The argument of Sec. 4 of VF then
shows that £,(£, £,(£)) =0 with 0 < £,(£) < £,(£, 0, 0) if and
only if

(i) Cz(es —X3)<0, Cs(g; -'8)<0 (46)
and

(ii) Q(E’ go(&»/“" Cz(&y "Xs)z - Q'(E’ go(s))/"ca(s: - €}
(47)

solves to give 0 < g (£) < ¢,(£,0,0). Thus, for fixed
£=1f,(&, ¢) is strictly increasing on 0 s¢ <¢ (&, 0, 0) if
and only if L(£,0)>0 or

Gz(é» "'Xs) + Gs(&, ""e)
[E2+2abt+ @+ b= 11172 7 [£2+ 2cX t+ P+ X2~ 1]

11’2>0)

(48)

where G,(£, - X,) and G,(£, — ¢) are given by Egqs. (A13)
and (A14). When Eq. (10) holds we see that each of the
two terms in Eq. (48) is positive and hence £ (¢, ¢) in-
creases strictly on 0 s¢ <¢,(&,0,0) for fixed £ 2 1,

7. SOLUTIONS OF F((n,5)=0

Next we study the behavior of the zeros of F(&,n, £)
when £ and 7 are held fixed. From Eqs. (30) and (19) we
find that

F(&,m, ) =A(E, ;K + 2B(E, ;;K?) ¢ + C(&, 1),
where
A(E, mK®) =a([B(E, ) P~ a,a,) +v?a, + 8%, - 28(£,n)y5,
B(&, m;K%) = by([B(, M P - a,a,) + byya, + by8a, ~ B(E,1)b,6
- B(&,mbyy,
CLE, m) =co([B(&, M - a,a,) + b2a, + bia, - 2B(£, 1)b,b,. (50)

The abbreviations described after Eq. (41) have again
been used except for S(£,7), which is the only term that
depends on 7.

(49)

The discriminant of the quadratic function of ¢ in Eq.
(49) is

[B(&,m;K*)F - A(g, ;EA)C(E, m) =({B(&, mP - a,a,)
X((b5 - ascs) {[B(E,MF - a,a,}
+2[= by(B,0 + byy) + agd b, + c,¥5IB(E, 1)
+ (0,8 = by ) + 2b,(byya, + byba,)

- ¢(YPay + 5°a,) ~ ay(bia, + b2a,)) (51)
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and the term in boldface parentheses vanishes when
BE.1) = (B2 = agc,) " {by(0,0 + byy) — agb b, — v
* [Cz(E’ "Xa)ca(sy - e)]liz} (52)

giving 1= p,(£;K?), with p,(£;K%) defined in Eq. (A6). The
terms C,(&, - X,) and C,(£, - e) are defined in Eq. (45).
Thus

[B(&, n;K*) P - A(E, ;;B*)C(£, 1)

= {85, MP - a,a,} (16PE*FPG*H*K*[v(£) P P(&, m:K?),  (53)
where
P(E, m;K%) = (£ + 2dX, £ + d* + X; - 1){(n - p,(£;K7))

X (n - p.(E;K%)). (54)

The discriminant in Eq. (53) is always nonnegative sin¢
the inverse of f,(£, £) is real. To show that if is in fact
positive we note first that when Eq. (10) holds

{l8(e, WP - ay(Bla£)}>0 (55)
for all ¢=1, n=f£.(,0) [or equivalently for n =1,
£>=g,(n) where g,(n), defined in Eq. (A3) and in Eq.
(1-36) with d -~ X, is the inverse of f(£,0)]. Estab-
lishing Eq. (55) is straightforward but tedious. Secondly
in Appendix A we show that either p,(£;K?) are complex
conjugates or

bAEK®) <p (5K <[,(£,0), (56)
for £ = 1. Thus, since the first factor in Eq. (54) is
positive when Eq. (10) holds and Eq. (38) is satisfied it
follows that P(£,7;K%) and hence the right-hand side of
Eq. (53) is in fact positive for £>1, n >f,(£, O).

The two real solutions of

F(&,m,£)=0 (57
are
Kg(é,n;Kz)
=[A(&, ;K] (- B(&, m;K*) # {{B(g, m;K) P
- A(E, m;KHC(E,m)P/2). (58)
Now from Eqs. (30) and (49) it follows that
C(t,f,(£,0)=0 (59)
and from Eqgs. (50), (40), (41), (42), and (43)
B(t, f,(&, 0;K?)
=[e, )2 {b,(R' (£, 0))*/2 + b,(R(£, 0))*/2} L(£,0)<0.  (60)

Thus
&, F.(E, O);K%) =02 £, (£, f,(£, 0);K?)

and also asn—+x

Eg(E,ﬂ(&'. 0);K?) ~ £,(£,0,0),

where £,(£,0,0) are defined by the right-hand side of
Eq. (21) with 1 -3, u—0, £—0. It now follows that
¢,(£,7m;K?) is the inverse of the strictly increasing func-
tion £,(£, £) on 0 < < ¢ (£,0,0). Hence ¢,(£,n,K?) in-
creases from 0 to {,(£,0,0) as  increases from
FJ(E,0) to + o,
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8. SPECTRAL REPRESENTATION OF THE
PENTAGON DIAGRAM AMPLITUDE

Since for fixed £ =1 f,(£, £) is strictly increasing on
0= ¢<g,(0,0) and £,(&,7;K?) is the inverse of f,(£, £)
on0<gs¢/(£0,0), Eq. (35) can be written

©

8EFGH d < d
Ix)= 11m e BEFGH v(§)dt __77___
10,0,¢; K2) £=-x folthesx®) M= %2
X T(E, 0, 6K?), (81)
where
I(¢, 7, 6K°)

tg (2 s K2 dt
=[ c[A(E, n;K)) 2+ 2B(E, ;K2 g + C(E, ) 7?

and A(&,n;K%), B(t,n;K?), and C(&, ) are given in Eq.
(50). Note that in Eq. (61) h(0, 0, €) and £,(£, €) depend on
K®. From Egs. (30) and (49) and the fact that £,(, ¢) is
strictly increasing on 0 s¢ <¢ (£,0,0) we have C(&,71)>0
for £>1, n>7,(£,0). The integration in Eq. (61) can then
be performed (c.f. Sec. 5 of VF) to give

(¢, 7, 6K%)=[C(¢,n)]*/?
C(&,m) + €B(E, ;K2 + [C(&, M) **[F(&, m, K3 /2
e[[B(E, ;K% — A(E, m;K°)C(E,n)F 2

The method of differentiating with respect to K> and
taking the limit € ¥+ 0 is now very similar to that given in
Sec. 6 (and 7) of I and in Ref. 11. We find that

o) = dy  8EFGH(E)
f E=% Jro,o M %2 [C(g,n) /2

« (= D/ {[BLE niK?)) ~ AGE, KO (649
B(E,m;K?) - A(t,m;K°)C(E,m)}

From Egs. (8) and (19) it follows that the factor
{B(&, M) - a,a,} [v(£)® in Eq. (53) does not depend on K*.
Thus

1 hd 1
I(xi):_i-[ £E- xl_/(‘,n -~ %y VF(&,m)

« (8/2K*)[K? P(&, 1:K°)]
K* P(£,1;K")

X1n

-(63)

1
f £~ xl»[(()n =%, VF(%,m)

(3/0K?) P(&, n;K%)
P(&,n;K%)

(65)

where
B(&,n;K?) = 32E2F2G?*H?K® P(&, 1;K?) (66)

and P(&,1;K?) is given in Eq. (54). The functions f,(¢)
(=£.(£,0)) and F(&,n) are defined in Eqs. (A2) and (A1)
(and in Eqs. (I-11) and (I-12) with d - X,]. Their prop-
erties are studied in detail in Sec. 8 of I. Note that the
relationship between B(¢,7n;K?) and P(&,7;K?) is similar
to that between F(», w) and F(&,n) in Eq. (I-12); that is,
B(%,n;K?) would be the function we would choose to de-
scribe the leading Landau curve of the pentagon diagram
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amplitude had we been working directly in the masses
and kinematic invariants rather than in the related
quantities in Eqs. (4) and (9).

As discussed in Sec. 2, while Eq. (10) can be satisfied
with physical invariants for sufficiently large internal
masses, the spectral representation in Eq. (65) does
not in general correspond to the physical amplitude
since for the physical amplitude associated with the
pentagon diagram in Fig. 1 X,, X,, and X_ would in
general be negative. To obtain the physical amplitude
one might then start with Eq. (65) and do an analytic
continuation in X;, X,, and X;. Continuation in x,(= - X))
(and also in x,) is straightforward since x; occurs only
in the Cauchy kernel. The continuation in X, and
X; is much more difficult since F(, n) depends on
X, and P(,n;K*®) depends on both X, and X,. The inner
integration in Eq. (65) can, of course, be carried out,
for example by using real and, if p,(£;K%) are complex,
complex partial fractions, to give a single integral rep-
resentation of I(x;). Thus in principle it should be pos-
sible to generalize the method of analytic continuation
used in II to apply to the pentagon diagram amplitude. In
this way it should be possible to determine directly how
and when complex triangle, box and pentagon singular-
ities occur, resulting in a breakdown of even a single
dispersion integral over a real domain. For the general
mass case that we have been considering in this paper
this would be a very difficult problem because of the in-
creased number of singularities and their more compli-
cated behavior. However, it is likely that this program
can be carried out for some specific processes of phys-
ical interest. The method used in II could in principle
also be generalized to obtain I(x,) for the case when the
stability conditions a, b, ¢, d, e> -1, rather than just
a, b, ¢, d, ¢>0, hold.

Finally we compare our spectral representation in
Eq. (65) with that given in Eq. (23) of Ref. 6. First note
that I(x,) given in Eq. (65) is real and well defined since
f.(&) is real when Eq. (10) holds and, from Egs. (Al)
and (A10), F(t,n)>0 for £>1, n>f,(£) and P(£,n;K%) >0
for £ 21, n=f,(£). Further for fixed £ both F(&,7n) and
P(t,n;K?) are quadratic functions of 1 and for fixed n
they are quadratic functions of £. In comparison, in Eq.
(23) of Ref. 6 it is assumed that p,(£;K®) are always real
whereas we show in Appendix A that they can in fact be
complex for the case considered there. More important,
the spectral representation in Eq. (23) of Ref. 6 is di-
vergent, that is, infinity is obtained when the integration
is carried out.

APPENDIX A

We collect here a number of results involving the
various functions needed in the main body of the paper.
It is assumed throughout that Eq. (10) holds. From Eqs.
(34) and (30),

F(&, x,) =F(t, x,;a, b, ¢, X,),
= (£ = 1)(x5 - 1) = 2(£ = 1)(x, - 1)(aX, + bc)
-2(E—1)a+ )b+ X)) -2(x, —~ 1)a+b)c+X,)
+(aX - bc) —(a+b+ c+X452
= (8 = 1)x, — £8)] [, - £ (8],

=(22 - 1)[£ - g.(%,)] [£ - g.(x,)], (A1)
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where from Eqs. (31) and (19)
f.(8)=£.(£,0)
=(£ = 1) [(£ - 1)(aX,+ bc)+ (a+ b)c+X,)
+(E2+2abE+ @+ b2 = 1)1 /2(£2+ 2cX, E+ 2+ X2 - 1)1/7)
(A2)
and
8.(%,) = (5% = 1) [(x, - 1)(aX, + bc) + (a+ c)(b+X,)
+(x2+ 2acx, + @+ 2 = 1)/2 (a2 + 26X jx, + b2 + X5 - 1)/2].
(A3)
Note also that
(8 =~ 1F(E, x,) =[G(§, x,)F - {2 + 2abt + @ + b7 - 1}
X{E2 + 2cX,E + 2+ X5- 1} (A4)
where
G(&, x,) =G(&, x,;a,b,¢,X,)
== %,(82 = 1)+ (£ - 1)(aX, + bc) + (a+b)(c + X,).
(A5)

The above functions (with X, —d, x,—y) were also de-
fined in Eqgs. (I-12), (I-11), (I-36), and (I-A5) and their
properties were discussed in detail in Sec. 8 and Ap-
pendix A of I and in Sec. 4 of II.

From Eqs. (52) and (45) we find that
PAEKY) = (82 + 2dX t+d2+ X5~ 1)
X[- E(E, X;, €) £ {Fo(E, - X)Fy(£, - )} /?],  (A6)
where
E(£, X, €)
=(£%2 - 1)eX, + (£ - 1)[e(ad + bX,) + X, (cd + X X;) — aX, - be]
+ ela+b)(X,+d) + X,(c + X )X, + d) + dPac + X2bX,

- X d(bc + aX)), (AT)
F,(¢, - X,)=F(¢, - X,;a, b, X, d), (A8)
Fy(t, -e)=F(t, ~-e;c, X, X, d), (A9)

with F(&, x,;a, b, ¢, X,) given in Eq. (Al).

Since
(B+2dX t+d+X2-1)>0

the inequality
P(£,m;K%)>0 (A10)

will hold for £ =1, n=f,(£) if either p,(£;K?) are complex
conjugates or if Eq. (56) holds. That it is possible, when
Eq. (10) holds, for p,(£;K?) to be either real or complex
conjugates depending on the value of £, where £> 1, can
be seen as follows. Consider first the case when

0< a,b,X,,d<1, X,>0. (A11)

Then one of the four possible configurations of the curve
T defined by F,(¢, - X,)=0 is as shown in Fig. 1 of II
with n — - X,. We see that F,(¢, - X,) may be positive,
zero or negative depending on the values of £ and X.
When a,b, X, d are no longer restricted to be less than
1, then there are more different configurations of I
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Examples of the possible configurations of I are
sketched in Ref. 12. Again F,(¢, -X,), and also

F, (&, - €), may be positive, zero or negative. This
statement is still true if the zeros on the right-hand
sides of the inequalities in Eq. (10) are replaced by
ones, the case initially considered in Ref. 6.

We now have the following cases to consider

(1) Fy(£, = X)Fy(£, ~ ) < 0. Then p,(£;K?) are complex
conjugates and P(£,n;K?) > 0;

(ii) Fy(%, - X,) 20, F4(¢,—e)=0. From Eq. (A7) it
follows that

(82 - 1)E(E, Xq, €) + (£ + 2dX £+ B+ X2 = 1)
X [(£ = 1)(aX,+ bc) + (a+ b)(c +X,)]

= Gy(&, = X3)G4(E, —€), (A12)
where

G,(£, -X,)=G(¢, - X450, b, X, d) >0, (A13)

G,(&, —e)=G(¢, -e;c, X, X, d)>0, (A14)

and G(, x,;a, b, ¢, X,) is given in Eq. (A5). Then using
two equations similar to Eq. (A4), relating F,(¢, - X,)
and G,(&, - X,) and relating F (%, — ) and G,(£, - e), and
defining

cosh k,

— GZ(E,—X:,) ,
T+ 2dX E+ P+ X - 1)HE + 2abE + &%+ b7 - 1)'/2

(A15)

cosh k,
Gs(gy - e)

(2+2dX t+ P+ X2 =12 (P + 2cX E+ P+ X5 - 1)12

(A16)
we find that
DUAEK?) - £(£)=(£ = 1) (£ + 2abE + a® + b* - 1)!/2
X (88 +2eX,E+ 2+ X5- 1)/?
X[—1 - cosh «, cosh k, + sinh &, sinh &, ]
=(£2= 1)1 (£ + 2abt + a° + b* ~ 1)*/2
X(£2+ 2eX E+ P+ X2 —1)'/2
X[=1~cosh (k, Fk,)]<0. (A1)
Thus Egs. (56) and (A10) hold.
(iii) F,(%, - X,) <0, F,(&, —e)<0. In this case we de-
fine cos¢, by the right-hand side of Eq. (A15) and
cos¢, by the right-hand side of Eq. (A16). Then
b,(E;K%) ~ £,(£)
=(£ - 1) (82 + 2abt + a® + b* = 1)* /2 (£2 + 2cX £ + C*
+X5-1)'"2[~ 1 - cos(o, £ $,)]<0 (A18)

since the inequalities in Eqs. (A13) and (A14) hold.
Again Eqs. (56) and (A10) are valid.
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Schrodinger equation with inverse fourth-power potential, a
differential equation with two irregular singular points
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The Schriodinger radial equation with inverse fourth-power potential is treated analytically. Solutions
in the form of integral representations of the generalized Laplace type are considered. Standard
solutions are defined relative to each of the two irregular singular points of the differential equation.
The coefficients in the linear relations persisting between any three of the standard solutions are
obtained. The expressions for the coefficients, which contain some Taylor and Laurent series and
finite determinants, are suitable for electronic computation. From the coefficients the § matrix and

the scattering phase shifts may be obtained immediately.

1. INTRODUCTION

The inverse fourth-power potential is one of the few
singular potentials for which the Schrodinger radial
equation can be treated analytically, Several authors!
have utilized the fact that, by suitable changes of the
variables, the Schridinger equation with this potential
can be transformed into the Mathieu equation the prop-
erties of which, although complicated, are rather well
known. °? In this way it was possible to derive analytical
expressions for the S matrix, the partial wave ampli-
tudes, and the scattering phase shifts. The results have
been reviewed recently by Frank, Land, and Spector. 10

-

In the present paper the Schrddinger equation with in-
verse fourth-power potential is considered from a dif-
ferent point of view. Since the Mathieu equation is in
some sense a more complicated differential equation
than the Schrodinger equation is, we prefer to treat the
Schrédinger equation directly. Then we are able to
derive in Sec. 2 some of the already known results in a
more transparent way than before, 10 While in Sec. 2 we
implicitly use some results from the theory of the
Mathieu equation, a more general treatment is present-
ed in Sec. 3 which constitutes the main part of this
work, The emphasis is on the fact that we are concerned
with a linear differential equation with two irregular
singular points of rank one. Accordingly, we consider
solutions in the form of integral representations of the
generalized Laplace type, thereby modifying and extend-
ing the work of Erdélyi. 1 we find exact expressions for
the coefficients in the linear relation between the two
fundamental sets of solutions defined relative to the two
irregular singular points. These expressions, which
contain some Taylor and Laurent series and finite de-
terminants, are shown to be suitable for electronic
computation under certain conditions. They may be used
to compute the S matrix and the scattering phase shifts.

There is a different method of treating the Schrddinger
equation by Fubini and Stroffolini, > which yields the co-
efficients and the S matrix in terms of infinite
determinants.

2. MODIFIED DERIVATION OF EARLIER RESULTS

The Schrddinger radial equation with inverse fourth-
power potential can be written

yn+2,’,-1yl+[k2_l(l+1)?‘z— ['32’}"4]3}(’}’):0. (1)

Here the potential parameter 8 and the momentum k are
real in case of the scattering from a repulsive poten-
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tial, and positive integer values of the angular moment-
um / are particularly important. Equation (1) has two
irregular singular points of the same species at zero
and infinity. In order to obtain an equation which is
more symmetric with respect to interchange of zero and
infinity, it is advantageous to extract an appropriate
power of 7 by

y@) =71, 2

Then f(¥) is a solution of the equation
7Y wof + [ - (+3) - By f (1) =0. 3)

This equation has power series solutions

fu)=7* 'g;” ctrn, 4)
where the coefficients obey the three-term recurrence
relation

[(p+ 2n)2 = (1 +32)%) 4, + RPchz — BChnia=0 (5)

withn=+.-, -2,-1,0,1,2,+-+. The value of the charac-
teristic index p is determined by the requirement that
this infinite system of linear equations have a nontrivial
solution, i,e., its determinant be zero. If this condi-
tion is satisfied by p = v, then it is satisfied by p=-v
too. Consequently, there are two solutions,

fu(r) and £,(), (6)

which are linearly independent provided that v is not an
integer, Furthermore, the condition is satisfied if
gL=v+2m withm=++-,-2,-1,0,1,2,-++, but this
simply corresponds to a different labeling of the coef-
ficients c¥, with respect to the index n and does not give
anything new. The coefficient c§f may be chosen arbi-
trarily, the other coefficients are then defined uniquely.
It is sometimes convenient to use the coefficients

bn= GB/RY"cY, M
which obey the more symmetric recurrence relation
(i +20)? = (T +2)?1CH, +iBkCY,oy +iBkClyyy = 0. (8)

To obtain expressions for these coefficients and the
characteristic index p is a problem which has been in-
vestigated extensively in the context of the Mathieu
equation, 5~*

The representation of the solutions (6) by Eq. (4) is
not useful in so far as we cannot infer their behavior
for small and large values of the argument ». By
analogy with the Mathieu equation, we therefore con-
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sider four other solutions which are expansions in terms
of products of Bessel functions:

f}v(y) = (C'l;v)‘i g;w (" 1)"C;v n(ky)J*v-m (%.@) 3 (ga)
f-v('r) (Col’)-l ZJ ("" l)nc (kT)J—vm(,f) (gb)

720 =t B - 003, (E)rnten, (00)
fEm =Mt 2 (- 1)"Csy (lﬁ) Jowen(R?). (9d)

That these four functions are solutions of Eq. (3) and
the coefficients are the same as in Eq. (8) can be seen
if any of Egs. (9) is inserted into Eq. (3) and the result-
ing derivatives of the Bessel functions eliminated by
means of the Bessel differential equation and the
relation’

29 (X} 1 V) = = 20t + 1) (%) 4 (V)
+xy[J -1 (x)Jumvl('y) +Jn01 (x)Ju+u+i(y)]- (10)

From the properties of the Bessel functions the
asymptotic behavior of the solutions (9) can easily be
seen when ¥ —~ 0 or v — «©, respectively:

173 ;
far)= (,,%%) cos (%,g - 5= -Z{) ,

(11a)
r—0, -m/2 <‘argr —argB<3n/2,
far) -'(;2%%)“2 cos (iﬁ g v— -Z) , (11)
r—0, -u/2<argr-argB<3u/2,
fary— 6;2—;,) e COS(’W-%' v- %;) (1)
y—o, -—g<argy-+argk<m,
S~ (ﬂ%;) v cos(krwg v 1—;) , (11d)

y—w -g<argr+argk<m.

b

When the power series expansions of the Bessel func-
tions are inserted into Egs. (9), both fL() and Fi)
are seen to have the form of ¥™ times an even Laurent
expansion and therefore are proportional to one another
and to the solution f_,(r) of Eq., (4). Similarly, both
FL(r) and f5(r) are proportional to the solution Fo 7).
Furthermore, we observe by inspection of Eqs. (9) that
for =X, where

X=Vip/k, (12)

the arguments of the Bessel functions become equal,
and we have

WX) = X),
L0 =fX).

(13a)
{131}
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Combining these facts, we find

R =R, (14a)

S0 =R (), (14b)
where, because of Egs. (13), only one constant '

R=FL0)/fX) =YX/ fLX) (15)
appears. A factor exp(- #37v) may be extracted by

R=R exp(~iimv) (16)

go that R is real (if B, k, I, and v are), as can be seen
if any of Egs. (14) is considered for real values of 7.
Explicitly we have from Eq. (15)

e G5 e = ORI T -
0 1= (- }nc n(\&—gﬁ)‘r«m-n(@

Taking suitable linear combinations of Eqs. (9a) and (8b)
and returning to the original differential equation (1), we
define two standard solutions

(18a)

xp(— zg V)ffv(r)],

= (—721?’)1 lz(simr U [exp (+ v—g »)f_‘,(r) -

yP(r)= (%g)i lzz‘(simn/)‘1 [exp(— z-;—r v) £L(r)
~ exp (H— )fw(r)]

which, according to Eqs. (11a) and (11b), have a simple
behavior at the origin,

(18b)

y V)~ exp(- B/7), (19a)
y®(r) ~exp(+ B/7). (19b)
Using Eqs. (14) and (16) we find the alternative
representation
y V)= (’”3) Sy B - RS ), (20a)
y0)= )" iR empt imr)
- Rt exp(+imn)f ()], {20b)

from which, by means of Egs. (11c) and (11d), the be-
havior at infinity can be found

1/2 - ~
y @) ~(§> propr— slimrv {[R exp (—- 212r v) - R exp(+z‘—72I v)]
xexp( 4)exp(+zkr)+[Rexp<+z-§ )
L ._71' . _
~R ‘exp(— i3 v)_‘ exp(+z4)exp( zkr)}
12 i [~ .3 ~_ .3
20~ ) | e {15 o (457
xexp( )exp(+ iky) + [R exp( )

— R exp (+ iZ v) exp <+z >exp(- ikr)p.
27)] 3

The S matrix and the scatiering phase shift 6 are de-
fined by

(21a)

{21b)
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S=exp(2i6) = — (K*/K™) exp(inl), (22)

where K* and K~ are the factors of exp(+:kr) and
exp(- ikr), respectively, in Eq. (21a). Accordingly,
we have

= i5) = &EM . 1
S=exp(2i8) = = exp(= in) exp[in (I +3 - v)] (23)
or, in view of Eq. (16),
RP-1 o
= B owp(- 2miy SRl 4z~ ), (24)

which is a formula appearing in the review article, 10
apart from the factor exp(- imv) which evidently has been
lost there. (This factor has been lost in a trivial way
during preparation of the review article, for it is pres-
ent in the formulas of both the original papersg'4
quoted.)

3. GENERAL TREATMENT OF THE DIFFERENTIAL
EQUATION

A. Symmetry of the differential equation

We want to consider solutions of the differential equa-
tion (1) and are particularly interested in their behavior
when » — 0 and when » — <, Both these cases can be
dealt with simultaneously if we take advantage of the
symmetry of the equation with respect to zero and
infinity. For we observe that if we introduce a new in-
dependent variable x by

x=kr (or x=-kv) (25a)
or by

x=1B/r (or x=~if/7), (25b)
then

glx)=fr) =r'*y(r) (26)

is a solution of the same differential equation in either
case, It therefore suffices to investigate the behavior
when x — = of the solutions of the x equation

x%g" +xg' +[x% = (1 +3): ~ BR*x] g(x) =0

B. Solutions of the x-equation

(7).

In a similar way as in Sec. 2 we introduce two stan-
dard solutions g,,(x) and g_,(x) by

gu(x)= Z) dgnxu*zny p=-v,+7,

(28)
-

where v is the characteristic index as before and the
coefficients dj, obey the recurrence relation

[(n +2m)" = (1 +3)*1d}, + 4,0 - BPRPdY, 0= 0. (29)
We take for the constants of integration

dy=dy’=1, (30)
The coefficients then satisfy the symmetry relation

d%,= (- BRY)"d%,. (31)

In order to investigate the behavior of the solutions (28)
near infinity, we first extract a factor x* in view of
greater flexibility and then consider integral represen-
tations of the generalized Laplace type

#0)= 22 [ explatioto (32)
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Here v(f) is a solution of the f equation
(# + 1) + (7 = 20" — @+ = N = S+ 2" - FR(t) =0,
(33)

and the contour C has to be chosen such that the bilinear
concomitant!?

exp(xt)[ (12 +1) (%% — 2%’ + xv" — 0" — 2t(x%0 — 2x0’ + 3v")

+2(xv - 307) + @r+ 1) (Ix%0 — tx0’ + t0" - xv + 207)
@+ eNErE- N v -] (34)

has the same value (identically in x) at both the termini
of the contour., The parameter A, which is quite arbi-
trary, will be specified later as circumstances demand.

C. Construction of an appropriate solution of the
t-equation

1. Solutions outside the unit circle

The ¢ equation (33) has two regular singular points
at =7 and {= -7 and one irregular singular point at
infinity. Outside the unit circle, a solution may be
represented by an appropriate power times an even
Laurent expansion

v, () =219, (1), (35)
6u(0)= 2 By, (36)

where the coefficients obey the recurrence relation
[(u+2n)? = @ +2)?2] (k=1 +2n+1)(n— 1 +2n +2)b4,
s(p=r+2n-D(p-r+2n)(u-r+2n+1)(n — 2 +2n+2)bs
- B bl = 0. (37
This recurrence relation is satisfied if

s D(p-r+1+2m) qn

T T r(p-asl)  Gm (38)

as may be seen by comparison with Eq. (29). Possible
values of y are therefore u=+vand p=- v, where vis
the characteristic index as before. But since v,(f) is a
solution of a fourth order equation, there are two
further significantly different values. In fact, the re-
currence relation is also satisfied if all the coefficients
with positive indices >0 vanishand p=x-1,2~2,2-3,
A -4 is one of the roots of the corresponding fourth
order indicial equation. Consequently, there are two
further solutions:

Uy (t) = Zg Ao, (392)
Vya(t) = "Z()) b2, (39b)

While here the coefficients by are arbitrary constants of
integration, the coefficients b%, which also are not de-
termined by the recurrence relation, have to be chosen
such that the series (39) converge outside the unit cir-
cle. But then they converge also on and inside the unit
circle and represent entire functions of {. Accordingly,
there are two solutions of the ¢ equation, one even and
one odd function of £, which are analytic at both the
regular singular points ¢=- ¢, +i. These solutions are
not of interest since they do not contribute to the con-
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tour integrals we will consider. Their existence is
relevant in so far as, at a later stage of our investiga-
tion, it will suffice to consider two linearly independent
solutions of the ¢ eguation instead of four,

2. Solutions relative to the regular singular points

The exponents of the f equation relative to any of the
two regular singular points £=~14,+7 are 0,1,2,x~ 5.
Provided that X is not half an integer, the solution does
not contain logarithmic terms, even though all the ex-
ponents apart one are integers. The solutions can
therefore be written

v*(t) = F(L+it), |t-i]|<2, (40)

wjtt)=G;(L+it), |t-i|<2, j=0,1,2, (1)
and

v(f)= F(1-it), |t+i] <2, (42)

ujty=G,(1—it), |t+i] <2, j=0,1,2, (43)
where

Gile)= L A, |2 <2, T

F(z)=2"?H(z), (45)

H(z):i%A,,(A-—%)z”, 2| <2. (46)

Here we may choose the initial coefficients arbitrarily
as

AO(Q):I for ¢=0, 15 2)k'%7 (47)
A1(0)=0, A,(0)=0, Ay(1)=0. (48)

The other coefficients then are determined by the re-
currence relation

(g+n-r+l+Dg+n—=A=1—
2g+n-r+3)g+n)
szz
+ 2g+n—-r+3)g+n)(g+n—1)(g+n-2)

2 4,.4()

Ag)=

An-3 (Q) H

(49)

[n>0ifg=2,x-%;n>1ifg=1;n>2if g=0; A4(g)
=A,(g)=0].

By Egs. (40), (41) and (42), (43) we have two funda~-
mental sets of solutions, valid in different but over-
lapping domains of the ¢ plane. Any solution of one set
may therefore be expressed as a linear combination of
the solutions of the other set, in particular,

2
vME) = Ev(8) + ;}0 Bu;(t). (50)

The coefficients E and B; may be determined by evaluat-
ing this equation and its first three derivatives at /=0.
They therefore appear as the solution of the system of
linear equations

F(1)  Gy(1) Gi(1) G,(1) 1)

F'(1) Gi1) Gi(1) G31)\ [Bo)_[-F(1) (51)
F"(1) Gy(1) G{(1) G} | B f {F (1)

FIII(I) G(I)Il(l) G{"(l) Gé/l(l) BZ - F”’(l)
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and will be considered as known numbers. Introducing
R .

G(z) =§B,G,(z), (52)

w* (1) = G(1 +1t), (53)

w{t) = G(1 - it), (54)
we have

v*(8) = Ev~(f) +u~(). (55)
There is also a relation .

u*(t) = (1 - ERv~(t) - Eu~(8), (56)

as may be seen by evaluating Eqs. (55), (56) and their
first derivatives at £=0, Similarly, we have

vo(t) = Ev*(t) +u’* (), (57)
u ()= (1~ EDo* () - Eu*(D). (58)

3. Multiplicative solutions and analytical continuation

Let us consider a path in the ¢ plane, in the form of a
loop enclosing the two regular singular points f=-14, +%,
such that it lies inside the region where v*(¢) or v~(¢)
converges, If we start at some point P of this path with
any of the appropriate solutions, say »*(#), and continue
it analytically along the path until we arrive at the point
P again, we generally do not reproduce v»*{¢) but obtain
some linear combination of v*(¢) and «*(f). By taking
appropriate linear combinations of »*(f) and «*(f), we
now want to construct multiplicative solutions w{f) such
that w(f) is reproduced, apart from a constant factor,
after the loop has been described. Considering the
special loop shown in Fig. 1, we define at the point

Py wit)=av*(t) +yu’(f). (59a)
According to Eqs. (55), (56) we also have at
P, :w(f) = [aE +y(1 - BV (d) + [ - yElu-(?). (59b)

Following the loop from P, in the negative direction, the
description of the circle around -7 increases arg(l - ¢#)
by ~ 27i, so that we obtain at

Py w(t) = [aE +y(1 - Ez)] exp{— 27i(\ - %)]U'(t) + [a - yE}u'(t)
= (), (60)

Following the loop from P, in the positive direction, the
description of the circle around +¢ increases arg(l +if)
by + 27 so that we obtain at

Py wlt) = o expl+ 2mi(n ~ 3) ot () + yu* (D). (61a)
According to Egs. (55), (56) we also have at
Py: w(t)={aE exp[+2mi(x - ]+ ¥(1 - EH}o ()
+{a exp[+2mi(x - 3)] - yE}u~(t)
=), (61b)

The constants o and y have to be chosen such that the
solutions at P; and P, are proportional to each other,
say

w'(t) = p exp@min)w 'V (), (62)

where the constant of proportionality has been denoted
by p exp(2wix) for later convenience. Then a and y are a
solution of the homogeneous system of linear equations
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FIG. 1. f plane: path along which analyti~
cal continuation is considered. The
points P; and P; are to coincide but have
been drawn separately to indicate the
termini of the path. Furthermore, the
straight lines may be assumed to coin-
cide with the imaginary axis.

E[p - exp@miN)]a+(1~E)(p+1)y=0, {63a)

—{(p+1)a+E{p - exp(-2miN)]y =0, (63b)
The requirement that the determinant be zero leads to

2% +2[1 - 2(E cosm\)?]p+1=0. (64)
The roots p; and p, of this equation obey the relations

Py +Dy=— 2[1 = 2(E cosmr)?), (65)

biby=1. (66)
Because of the last equation, the two roots may con~
veniently be represented by means of one (not neces-
sarily real) parameter » in the form

P1=exp(— 2miv), p,=exp(+2miv). 67)
Then we have

Py +Py=—2(1 - 2cos’ny) (68)
and, by comparison with Eq. (65),

cos?rv=(E cosm)l. (69)

The further discussion may be restricted to one choice
of p if all the quantities depending on p carry an index
@ corresponding to p = exp(~2min). The name v for the
new parameter of Eqs. (67) is appropriate in view of
the fact that it is the characteristic index. For we are
constructing two functions w, {f) which, aceording to
Egs. (62) and (67), obey the circuit relations

w,[exp(2ni)t] = exp[2mi(x - p)w, (¥) (70)
with y=vor g =~ v, respectively. But as shown in Sec.
3C1, there are just two solutions which are not single-
valued and obey the same circuit relations with v equal
to the characteristic index. It should be noted, however,
that the quantity » here is defined by Eqs. (67) or (69)
mod 1 only, while the characteristic index has been de-
fined mod 2. This fact is reflected in the sign ambiguity
arising if we want to take the square root of Eq. (69).
This sign has to be chosen such that the functions w, (f}
obey also the appropriate half-circuit relations suggest-
ed by Eq. (35), namely

w,[exp(in)t]= explin(r— u - 1)]w, (?). (71)
Equation (59b) may be simplified by means of Egs. (63)
8o that we have at P,
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wu(t) =

o 0 +yut(t) if |t-i] <2,

explin(A - p - 1)}, exp[27i(A ~ 3)Jo~(t) +y, 2" (D)}

if |2+ <2. (72)
In order to check the half-circuit relation (71) we
evaluate Eq. (72) for {=2{ and {=— 2{ assuming that
arg(l +it) =arg(l - i) =0 on the imaginary axis near P,,
By means of Eqs. (40}, (42), (45), (53), (54) we find

wu (22) =0, exp{iﬂ'(h - %)]H(_ 1) + VuG('— 1)3 (733)
w, (- 20) = %‘—5}% exp(~ir(A - u - 1)]
x{a, explin(A— 2)JH(- 1) +7,G(- D}.  (73D)

By comparison with the half-circuit relation (71) we con-
clude that the equation determining the characteristic

index is
cosnv=E cosmx , (74)
rather than Eq. (69). Using Eq. (74) the ratio of the co-

efficients ¢, and y, may be found from any of Egs. {63)
to be

a, /v, =exp(-in[x - 3]) sinm(r— p)/cosmA. (75)
If we choose arbitrarily the normalization
v, =explizn{r - p - 1Tz - X) cosmy/sinm(x - p)  (76)

in view of later convenience, all the quantities in Eq.
(72) are known. The analytical continuation of w,, (f)
for larger values of |#| is, according to the discussion
following Eq. (70), proportional to the function v, (¢)
given by Eq. (35). We then obtain finally

T(z - A) exp[+i(r/2) (A~ u ~ 1)]{exp[- in(x—2) ()

cosmA ol . X
*sinr(h- ) (t)} i fe-f <2,

w, (t) ={ T -2 exp[—i(n/2) (A = = 1)Kexp[+in(r— ) v ()

COSTA - . .
+ simr(h—u)u (t)} if lt+s’ <2,

AT(p=2+1)p, () if |t >1. (77)

Here the constant of proportionality

A - T'(z - T = pisinr(x = p) H(=1) +cosmr G(- 1)]
(I "2).=u:f¢u(_ 4)

(78)

may be checked by comparing the first and last line of
Eq. (77) for t=2i. The powers are defined such that
near the point P, of Fig. 1 we have arg(l - if) =arg(l +it)
=0 if ¢ is on the imaginary axis while £l <1, and arg?
=0 if ¢ is real and positive.

D. Contour integral solutions of the x-equation

1. Suitable contours

The ¢ equation has one irregular singular point at in-
finity, It can be shown that there are four linearly in-
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FIG. 2. t-plane: contours suitable for the integral
representation. :

dependent solutions which, when |#| — <, behave
asymptotically as ¢-1*11/22 exp(2eVpRt) with e= ~4,1,7,- 1,
respectively. This behavior is dominated by the kernel
exp(x?) of the integral representation (32) so that the
bilinear concomitant (34) tends to zero when |¢]| — in
appropriate sectors of the { plane depending on argx.
Consequently, there are contours, suitable for the in-
tegral representation, which start somewhere at in-
finity, enclose at least one of the regular singular
points, and return to the starting point at infinity. Some
examples of contours appropriate for our purpose are
shown in Fig, 2.

2. Solutions relative to the irregular singular point at
infinity

We are going to define two standard solutions of the
x equation relative to the irregular singular point at
infinity. This can be done in analogy to the definition of
Hankel functions, since for %2 -0 the differential equa-
tion reduces to the Bessel equation of the order I +3.
For our purpose, however, it is more convenient to use
a different normalization, Our standard solutions are

g'P) = zlm x"f exp(xt)w*(f)dt, —m/2<argx<u/2,
C1

(79a)
g(”(x) = 2—]‘;;,);"./;2 exp(xt)w=(t)dt, - TT/Z <argx <77/2’
(79b)
where
w*(f)
= T'(3 - ) exp[- i(n/2)AJv*(f) } if |£-i] <2,
= T'(5 - ) exp[- &(n/2)A](1 +at)* 2H(1 + i) (
80
w™(f) a)
= T - %) expl+i(n/2)AJo"() } it [£4d] <2
= T(3 = \) exp[+i(n/2))(1 - i1 /2H(1 - i) '
(80b)

Here the powers are defined such that arg(l - if) =arg(l
+7#)=0 when f is on the imaginary axis while |} <1.

The solutions (79) may be continued analytically into
larger sectors of the x plane by rotation of the contour.
In each case the possible angles of rotation are limited
by the presence of the other regular singular point so
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that g'*2(x) may be defined in the sector — 7 <argx <27
and g®(x) in the sector - 2m <argx <m. If the Taylor
series are inserted for H(1 +4f) and H(1 - if) and the
integrals performed term by term, then the asymptotic
expansions of the standard solutions for |x| — < are ob-
tained in the usual way:

g (x) ~ exp(— in/4)x™ /% exp(+ix) Z}o a,(ix)™,
n=

-7 <argx <27, (81a)
2B (x) ~exp(+in/4)x 1 exp(- ix) 2J a,(- ix)™",
n=0
- 27 <argx <m. (81b)
Here the coefficients
a,=A, (A= 5)T(\+ 3 +n)/T(A+3), (82)
which do not depend on A, can be obtained from the
recurrence relation
n+)n~-1-1) B2
a,l = _‘_')_Zn—-"_— a”_I + _z'n_ a"__3 (83)

with a;=1, a;=a,=0,

3. Laurent series solutions

Let us consider the integral representation (32) with
the contour C3 and v(f) = I'(u — A+1)v,(¢), where argi=0
if ¢ is real and positive, Inserting the Laurent series
for v, (¢) according to Eqs. (35), (36) and integrating
term by term, we find that the result is just the function
g.(x) defined by Eq. (28). The standard solutions (28)
therefore have the integral representation

g,(x)= Elv—r—ix"l"(u -2+ I)L3 exp(xt)v, (f) dt,

- 7/2<argy <u/2, (84)

for u = v, - v. The analytical continuation for other
sectors may be obtained by rotation of the contour by an
appropriate angle. Therefore Eq. (28) defines g,(x) for
arbitrary values of argx.

4. Linear relations between the solutions

Since we are concerned with a second order differen-
tial equation, the four standard solutions g‘"'(x), g®(x),
g,(x), g.,{(x) we have introduced so far are not indepen-
dent, but linear relations persist between any three of
them. In order to determine the coefficients we con-
sider the integral representation (32) with the contour
C; and the function w,(f) of Eq. (77) inserted for v(¢).
Then, according to Eq. (84), the integral is equal to
A,g,(x). Now the contour C; may be deformed into the
contour C; which is just the sum of the contours C; and
C;, apart from a straight line, connecting them at in-
finity, which does not contribute to the integral (Fig. 2).
According to Eqs. (79), (80), the integrals along the
contours C, and C, give g¥(x) and g (x), respectively,
multiplied with the appropriate factors following by
comparison of Eqs. (80) with the singular parts of Eq.
(77). We therefore obtain

AL, (%)= exp[-i(n/2)u] g™ &) + exp[+i(n/2)u]g P (%),

L=v,= 0. (85)
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Then, provided that the characteristic index v is not an
integer, we also have

gV x) = m {exp[+ i(n/2)v]aLg.,(x)
- exp[-~ i(1/2)v] A, 8.,(%)}, (86a)
gPx)= m{exp[- i(n/2)v)]AL g.(x)
- exp[+ Z("/Z) V] A+vg¢u(x)}~ (86b)
8. Circuit relations
From Eq. {28) the circuit relations for g,(x) and
£..,{x) are known to be
g.lexpinm)x] = explimmp)g,, (x), (87

where m is any integer and y = v, - v. Then, by means
of Eqs. (85)—(87), the circuit relations for g1(x) and
g™ (x) may be obtained:

) , sin(l - m)my g® sinmmy e

g exp(mmi)x]= ————— gVx) - —— =g ),
(88a)

2 , sinmry Py sin(l+m)tv @,

g Plexplmmi)x]= ———=g D (x) + = ————g "W).
(88b)

These equations extend the definitions of the functions
g1(x) and g(x) and allow one to obtain their asympto-
tic expansions for values of argx other than those con-
sidered in Sec. 3D2,

6. The case when the characteristic index is an integer

1t may happen for particular values of %? that the
characteristic index v is an integer, Then g,,(x) and
£_,(x) are no longer linearly independent, so that Egs.
(86) become meaningless. But the linear relation (85)
and the coefficient 4, (where u =y, — ») remain relevant.
The Eq. (78) defining A,, however, breaks down when-
ever X is half an integer or A~ u is an integer. Here we
see one advantage of having introduced the arbitrary
parameter X by extracting the factor x* in front of the
Laplace integral. For otherwise, i.e., if A=0, Eq. (78)
would break down whenever p is an integer. But A, is in
fact independent of A, so we may choose any convenient
value, e.g., A=3. Then A, remains well-defined by Eq.
('18) even if p is an integer.

We do not want to explain the other aspects of the case
when u is an integer, which is quite analogeous to the
case of Bessel functions of integer order, !

E. Solutions of the r-equation

1. Solutions relative to the singular points

The solutions g*’(x) and g®’(x) may now be used, ac-
cording to Sec. 3A, to define two fundamental sets of
solutions of the 7 equation (1) relative to the irregular
singular points at the origin and infinity, respectively,

y @)= i(g)u ‘“(ﬁ exp(m/z))

YO = (g)l ’2g(2)(§ exp(in/ 29 ,
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y®(r) = exp(+in/ 4)(;)1 2 gV r), (90a)

i
y'O(r) = exp(~ in/4)(§) "g ) (90D)

They have the asymptotic expansions

y ) ~exp(- 4/ 5 (- 7Y, -on/2 <arer/s<tu/2,

r—~0, (91a)
y®(#) ~ exp(+ B/7) é a,,(%;)”, -m/2< argr/B <‘57r/2,
r—0, (91b)
)~ 11, exp(+ikr) éan(ikv)"‘, — 7 <argkr <27,
¥ -, (92a)
y @) ~% exp(— ik7) '%a,,(— iky)™, - 27 <argky <m,
g > 0, (92b)

with the coefficients a, from Eq. (83).

2. Linear relations between the solutions

The linear relations persisting between any three of
the solutions (89), (90) may be obtained by means of the
functions g, (x), which obey the symmetry relation

& (—5 exp(in/ 2)) = expli(n/2)](Br)*g. . (k7),

L=v,—- W (93)
Using Eqs. (85), (86), (89), (90), and (93) the coeffi~
cients of the linear relations
yu)(’}’) =D§33’(3)(9’) +D14y(4){7’), (942_}
¥ B@) = Doy D7) + Dyy V() (94b)
are found to be
~ 1 l E)l 12 .
D1s= Fstnmy (R - R)(k exp(- #n/4), (95a)
Dy
. 1 . ) B 1/2 .
= SeineD (R exp(+imy) - R exp(-iny) (75) exp(+in/4),
(95b)
Dy,
) 1 . BY/? .
=Saiy (R exp(-imy) - & exp(+z7'rv)) (Zj exp(+in/4),
(95¢)
Dyy =~ Dy, (95d)
where
R=[Bk exp(in/2)]™ A/ A, = expl- i(n/2)VIR. (96)

This quantity is identical to the quantity R of Eq. (17),
as may be seen by comparing Eqs. (94)—(96) with Egs.
(21). But we have obtained here an entirely different
analytical expression for it.
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The case when v happens to be equal to any integer or
zero requires special attention. Then we have R=1 or
R=-1 so that the expressions (95) are undefined and
have to be replaced by their limiting values.

3. Integer values of the characteristic index

If v=0 we have R=1 evidently by Eq. (96). It will now
be shown that R=1 or R=-1 if v is equal to any integer
#0. For this purpose it is necessary to consider the way
of generating the coefficients of the Laurent series by
means of continued fractions, a method well-known from
the Mathieu equation. Let us introduce the “right” and
“left” ratios of the coefficients

Rm = dgm/dgm-z (97)
and

L= d% /% . (98)
With the abbreviation

V= (u+2m)t - (I +3)° (99)

it then follows from the recurrence relation (29) of the
coefficients that

-1 -1 g% R
R,= 27,2 = £ Bz ) (100)
V= BRRpy Vot Vst + Vo +
27,2 2 27,2 22,2
LK _BR g%k FE oy
Vimeti+ Lt Voot + Vg + Vg +7
According to Eqs. (97), (98) we have
RyLy=1. (102)

This condition of consistency is satisfied by the ratios
Ry and L, computed from the continued fractions (100),
(101) only if u has the value of a characteristic index
(t=v,— vmod 2). Let us first assume that this value
i =2M is an even integer. Then we have the symmetry
relation

Vosen= Vorgen (103a)
and therefore

Loon= = BHR_jop. (104a)
It then follows that, withe=+1 or -1,

A2 420 = €EBR) A2 (105a)
or, by means of Eq. (31),

A%y g0 = €(BR) A3l 0. (1062)

If, on the other hand, p=2M+1 is an odd integer, Eqgs.
(103a)—(106a) have to be replaced by

Vesen=Vottenats (103b)
Lyyn=—BR°R yon, (1041b)
R O e P (105b)
Aty = €(BR) MU o, (106b)

respectively. By means of Eqs. (106) it is not difficult to
show that R=¢(- 1)” whenever the characteristic index v
is an integer #0. Whether e=1 or e=—1 depends on the
values of the parameters 7 and 8%%2%. There are these two
possibilities, in analogy to the existence of even and odd
periodic solutions of the Mathieu equation,

In order to avoid some obscurity which might arise by

J. Math. Phys., Vol. 15, No. 9, September 1974

Wolfgang Bdhring: Schrédinger equation with r™# potential

1458

inspection of Eqs. (95), (96), we finally want to show
that, if gk and ! are real parameters, then odd integer
values of the characteristic index cannot occur. For if
we assume that v be an odd integer, say v=1, we have
L,=- B*%’R, from Eq. (104b), where the continued frac-
tions L, and R, are real in this case according to Eqgs.
(99)—(101). It then follows that R L,= - 8%’R? is negative
real. But this result violates the consistency condition
(102), and therefore our assumption that the charac-
teristic index might be an odd integer is wrong. Never-
theless, values of v very close to the odd integers may
oceur. In fact, numerical computations show that the
characteristic index, considered as a function of I with
Bk?> 0 fixed, has maxima and minima some of which
are extremely close to an odd integer. Even integer
values of v, on the other hand, do occur, In their
neighborhood v may become complex, its real part then
being equal to that integer.

F. Computational aspects

The formulas we have obtained for v, A,, and R are
relatively convenient for electronic computation. We
have to evaluate twenty Taylor series, the coefficients
of which can be computed recursively, for a value of the
variable equal to half the convergence radius. Sixteen of
these series represent the coefficients of the system of
linear equations (51) which has to be solved, four addi-
tional series are needed in the evaluation of H(- 1) and
G(- 1). Finally, two Laurent s~ries ¢,(—4), p=v,- v,
have to be computed for a value of the variable equal to
four times the convergence radius of the principal part.
The coefficients of these Laurent series or the related
coefficients dy,, obey a three-term recurrence relation
and may be evaluated by means of continued fractions:
The ratios of coefficients R,, and L,, are evaluated for
the maximum value of m required by means of the con-
tinued fractions appearing on the right-hand side of
Egs. (100), (101). The ratios for the lower values of m
then are obtained recursively using the left-hand part of
Eqgs. (100), (101). Finally the coefficients themselves
are obtained recursively by

dé‘m =R, A5m-a, di‘2m =Ly 1% maas (107)

starting with m=1 and df =1.

If the system of linear equations (51) is solved by
Cramer’s rule and use is made of the fact that the deter-
minant D of the system is, apart from the sign, a
Wronskian of the ¢ equation equal to

-D= (- HO-HO- P,

then an explicit expression for the characteristic index
v is obtained in the form

(108)

— Dy cosma

STV D= DD 2 109
where
F1)  Gy1) Glgn cm;
|-ro) ) Gl G
Di\pty Gi)) 61(1) 635(1) (110)

- F"(1) Gi"(1) Gi"(1) Gi*(1)

Here the value of the finite determinant D, enters, the
elements of which are Taylor series. This method of
generating the characteristic index therefore seems to
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be advantageous as compared to one of the usual methods
which requires the computation of an infinite
determinant.

A simple but sensitive check of the equations them-
selves and of the accuracy which can be achieved if they
are evaluated numerically is provided by the parameter
. This parameter, which is quite arbitrary except that
it must not be equal mod 1 neither to } nor to the
characteristic index, influences the computation signi-
ficantly, but the final results for v, A,, and R do not
depend on it. Therefore computations with different val-
ues of A may serve for checking.

By inspection of the relevant equations and on the
basis of several numerical computations (performed
with real values of the parameters >0 and g%?) we
arrive at the following conclusions concerning the
choice of A and of v [which is defined by Eq. (109) mod
2 only]. In order to obtain an accurate value of v even if
! is not small (i. e., larger than something like 3), an
integer value near — |l +3| should be chosen for the
parameter A, This is important also in view of the fact
that the accuracy of R computed by any method depends
on the accuracy of v. The coefficients of the Laurent
series can be computed accurately only if v is chosen
such that its real part is as close to { +3 as is possible.
For computing the A, the parameter ) should be near
— |I+%l, but sufficiently different from + » mod 2 and
from half-integer values.

If these points are observed, accurate results may be
obtained, If / is not too large, both the methods of com-~
puting R give equally accurate values, although the con-
vergence of the series is faster in the conventional
formula (17). But if » happens to be very close to an
integer, the values of R computed by the new method
are often more accurate, since then the conventional
formula is very sensitive to errors of v (via the Bessel
functions of nearly integer negative index). If I becomes
larger, however, the conventional formula is superior
since the terms with H(- 1) and G(- 1) in A, may inter-
fere destructively so that significant figures are lost.
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Nevertheless the new method still gives accurate results
if the scattering phase shifts is all what is wanted. For
as the numerical accuracy of |R| decreases, it becomes
larger and larger compared with 1 so that, according to
Eq. (24), the phase shift becomes more and more in-
dependent of R.

Note added in proof: Using a quite different and
modern method by Naundorf, ¥ we find

A, =2Z)0a,,/r(u +3 +n),

with the coefficients a, from Eq. (83). By means of Eq.
(96) we then may obtain another expression for the im-
portant quantity R, which is remarkable because of its
simplicity and because of the fact that the coefficients
of the Laurent series do not enter.
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By formulating the conditions for dynamical symmetry mappings directly at the level of the
dynamical equations (which are taken in the form of Newton’s equations, Lagrange’s equations,
Hamilton’s equations, or Hamilton-Jacobi equation), we derive new expressions for dynamical
symmetries and associated constants of the motion for classical particle dynamical systems. All
dynamical symmetry mappings we consider are based upon infinitesimal point transformations of the
form (@) X’ =x'406x’ [6x =& (x)da] with associated changes in the independent variable ¢ (path
parameter) defined by (b) 8t ={r2¢[x(¢)] dt+c} 8a. A generalized form of the related integral

theorem (a method for obtaining constants of the motion based upon deformations of a known
constant of the motion under dynamical symmetry mappings) is obtained. We take the “Newtonian
form” of the dynamical equations to have a coordinate-covariant structure with forces defined by a
general polynomial in the velocities and obtain dynamical symmetry conditions for all such systems.
For the special case of conservative systems the related integral theorem is applied. Based upon
Lagrange’s equations with L =L (x',x’) we find the conditions for dynamical symmetry mappings

may be expressed in the form

(c) (3/3x/)[BL +L(d/dt)(81)]- (d/dr)(d/a%/)[BL + L (d/dt) (§1)] =-2¢ ;[(BL/d5i)%i - L] ba.

From this form we obtain a new formula for concomitant constants of the motion: (d) [9(8L)/dx/] %/
—8L =k. By use of the related integral theorem such constants of the motion can be expressed as
deformations of the energy integral under the dynamical symmetry mappings defined by (c). A short
derivation of the Noether identity is given which is independent of the integration processes of
Hamilton’s variational principle. For mappings of the type (a), (b) “Noether type” symmetries and
associated constants of the motion are formulated. For a conservative dynamical system with
L=(1/2)gyx ix/ —V(x) we find such Noether symmetries are basically conformal motions, while
those derived from (c) are basically projective collineations. For such systems the constants of the
motion (d) are evaluated and shown in general to differ from those obtained from the Noether
method. We show for conservative dynamical systems that the formulation of dynamical symmetry
mappings directly at the level of the Hamilton-Jacobi equation leads to the Noether symmetry
conditions. Dynamical symmetry conditions are formulated for Hamilton’s equation in phase space
and shown to be more general than canonical transformations. The formulation of the related integral
theorem in phase space is found to be a generalization of Poisson’s theorem. For systems with
H(x4), A=1,...,2n, it is an immediate observation that 84 induced by a symmetry mapping is a constant
of the motion. Application to the isotropic harmonic oscillator shows both symmetric tensor and angular
momenta constants of the motion are obtained in this manner. An additional constant of the motion

04 £4-2¢(x 4 ) is shown in general to be a concomitant of a phase space symmetry transformation.

1. INTRODUCTION

We consider in this paper dynamical symmetries and
associated constants of the motion for classical particle
dynamical systems. For such systems a dynamical
symmetry is a transformation which maps the set of all
dynamical paths into itself.! It is well known from the
work of Noether?? how conditions for dynamical sym-
metries may be derived by use of the formalism of
Hamilton’s variational principle and that certain con-
stants of the motion are concomitant with the existence
of such dynamical symmetries. It is also well known
from the work of Poisson that certain types of canonical
transformations associated with the existence of con-
stants of the motion may be interpreted as dynamical
symmetry mappings at the level of Hamilton’s
equations.?

In several recent papers’~® the present authors de-
veloped an additional symmetry-based method for ob-
taining constants of the motion. This method, which was
published in various forms as “related integral
theorems,” provides a means for deriving additional
constants of the motion based upon the deformations of
a known constant of the motion under dynamical sym-
metry mappings.

1460 Journal of Mathematical Physics, Vol. 15, No. 9, September 1974

It is a main purpose of this paper to give a unified
proof of the above mentioned related integral theorems
which will include all theorems of this type previously
proven for specific classes of dynamical equations in
both configuration space and phase space, and where
applicable to compare various aspects of this method
with the more familiar Noether and Poisson methods
for obtaining constants of the motion.

We shall also show that by formulating the conditions
for dynamical symmetries directly at the level of the
dynamical equations (which we take in the form of New-
ton’s equation, Hamilton’s equations, Lagrange’s equa-
tions, or the Hamilton—Jacobi equation) that we obtain
certain new and interesting relationships between
dynamical symmetries and constants of the motion.

Throughout this paper we shall base our dynamical
symmetries upon the existence of infinitesimal point
transformations (3.1). Any accompanying transforma-
tion (3.3) in the independent variable (dynamical path
parameter) will be treated as a transformation which is
correlated to the point mapping being considered. For
the most part we shall also limit our discussions to con-

Copyright © 1974 American Institute of Physics 1460
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stants of the motion which have no explicit dependence
upon the independent variable, We recognize that such
mappings and/or constants of the motion are not the
most general allowed in the traditional Noether and
Poisson methods; however, they suffice for the pur-
poses of explaining and comparing the various ap-
proaches to obtaining dynamical symmetries and con-
stants of the motion. The time-dependent theory as
well as field theory analogs will be considered in a
later paper.

In Sec. 2 we first define the class of dynamical sys~
tems to be considered in terms of a system of general
second order ordinary differential equations (2.1),

In Sec. 3 we mathematically formulate the conditions
(3.13) for the existence of a dynamical symmetry map-
ping directly at the level of the above~mentioned
differential equations.

In Sec. 4 we prove a generalized related integral
theorem for the class of dynamical systems considered.
We base this derivation directly upon the use of infini~
tesimal point mappings (with associated changes in path
parameter) thereby eliminating the added conceptual
complications associated with the Lie derivative ap-
proach used in previous formulations.

In Sec. 5 we specialize the general form of dynamical
equations (2.1) to be of “Newtonian form” (5.1). These
equations, which are taken to have a manifestly coordi-
nate—covariant structure, embrace many important
types of dynamical systems in that they allow for the
inclusion of rather general velocity dependent forces.
Based upon these equations we obtain a general form for
the dynamical symmetry conditions as a direct applica-
tion of the method explained in Sec. 3. As a detailed
illustration we further specialize the Newtonian form of
the dynamical equations to those of a conservative
system. The specific symmetry conditions obtained
[(5.15), (5.16)] indicate the dynamical symmetry map-
pings are basically projective collineations subject to
additional restrictions dependent upon the form of the
potential energy. By application of the related integral
theorem to such systems it is found that the deforma-
tions of the energy integral with respect to the sym-
metry mappings generate additional quadratic constants
of the motion. (For the Kepler problem and the three-
dimensional isotropic simple harmonic oscillator the
well-known Runge—Lenz vector and symmetric tensor
constants of the motion respectively have recently been
obtained by this method.?)

In Sec. 6 we specialize the basic dynamical equations
(2.1) to the form of Hamilton’s equations in phase
space.!® The accompanying specialization in the dynam-
ical symmetry conditions (3.13) results in symmetry
conditions (6.4) which in general lead to noncanonical
dynamical symmetry mappings.!' From the form of
these symmetry conditions two methods for formulating
associated constants of the motion are immediately ob-
vious. The constants of the motion (6.6) resulting from
one method are shown to be a direct consequence of the
invariance of the divergence-free character of the inte-
gral curves of a Hamiltonian system under dynamical
symmetry mappings. The constants of the motion (6.13)
given by the second method result from the deformations
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of the Hamiltonian of the system under the dynamical
symmetry mappings. The constants of the motion asso-
ciated with this latter approach are also shown to be
obtainable from the phase space formulation of the
related integral theorem.

It is also shown that the phase space form of the re-
lated integral theorem is a generalization of the well-
known Poisson’s theorem on constants of the motion.

A simple application of this (phase space form of)
related integral theorem to the three-dimensional iso-
tropic harmonic oscillator shows that the well~known
symmetric tensor and angular momenta constants of
the motion result from symmetry-induced deformations
of the Hamiltonian,

In Sec. 7 we specialize the general dynamical equa-
tions (2.1) to the form of Lagrange’s equations. The
accompanying specialization in the conditions (3.13) for
dynamical symmetry mappings results in symmetry
equations (formulated directly at the level of Lagrange’s
equations) which may be reexpressed in a new form
(7.6) which displays a structure similar to Lagrange’s
equations.

From this form of the symmetry equations it is a
simple matter to obtain a new formula (7.10) for as-
sociated constants of the motion. An investigation into
the nature of these constants of the motion shows they
may be reexpressed as the deformation of the energy
integral under the above-mentioned dynamical sym-
metry mappings. Thus for this case we find the essen-
tial mechanism of the related integral theorem is
actually contained within the equations which determine
the conditions for a dynamical symmetry mapping. Two
specific Lagrangians are chosen to illustrate consisten~
cy with results obtained when the dynamical equations
were taken in Newtonian form and in Hamiltonian form.

In Sec. 8 we first give a short derivation of Noether’s
identity (8.5) which is independent of the integration
processes of Hamilton’s variational principle.® We then
make a comparison between the “Noether symmetry
conditions” (8.6) based upon this well-known identity
and the dynamical symmetry conditions (7.6) which
were formulated directly at the level of Lagrange’s
equations. We find that even for the relatively simple
case of a conservative dynamical system these two
approaches lead to considerable differences in sym-
metries, For such systems we find that the Noether
symmetries are fundamentally conformal mappings
whereas the dynamical symmetries formulated directly
at the level of Lagrange’s equations are basically
projective. Therefore the intersection of these two
symmetry types is limited to homothetic mappings.

A comparison of the constants of the motion (7.10),
(8.12) associated with these two approaches shows that,
in general, they differ. For example, in the case of the
three-dimensional isotropic harmonic oscillator we find
the angular momenta first integrals are given by the
Noether formula (8.12) and the symmetric tensor
quadratic first integrals are given by the new formula
(7.10). Hence the two methods of obtaining constants of
the motion complement each other in this application.

In Sec. 9 we consider the problem of proving that the
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Noether symmetry mapping conditions (as formulated
from the Noether identity) can also be formulated di-
rectly at the level of the dynamical equations. We show
for a conservative dynamical system that the demand
that the set of solutions of the Hamilton—Jacobi equation
maps into itself leads to the Noether symmetry condi~
tions. Because the Hamilton—Jacobi equation is a rep-
resentation of the dynamical equations in the transfor-
mation theory of mechanics we may thereby interpret
the Noether mappings as dynamical symmetry mappings
which are also demonstrable at the level of the dynam-
ical equations. It then also follows that the constants of
the motion associated with the Noether symmetries can
be considered as concomitants of dynamical symmetries
based upon the Hamilton—Jacobi equation,

2. DYNAMICAL SYSTEMS

Consider a system of n» second order differential
equations’?

Ei(xt, ..., xm %Y, ..., %, .., ") =Ei(x,%,%)=0,

]=19 cay (2-1)
where

., dxt _ Bt

x1=7, =k, (2.2)

We observe that Newton’s equations, Lagrange’s equa-
tions, and Hamilton’s equations (mentioned in the intro-
duction) are of the form (2,1).%3

It is assumed that equations (2.1) satisfy the condi-
tions for solvability of %! in terms of x’’s and x/s.

We represent the solutions of (2.1) in the form

w=fa,...,anb%, ..., 0%t =fa,b,!), (2.3)
where the a! and b! are 2n constants of integration. For
specific values of these 2n constants equation (2.3) will
define a curve y. The totality of curves so obtained will
be denoted by I'. The coordinates x?! of a particular
curve y are denoted by

xi=fHa,,b,,1). (2.4)
In this paper we consider first integrals of the differ-
ential equations (2.1) which are of the form!*

I(x, %)= const, (2.5)
where it is understood that the left side of (2.5) when
evaluated along any solution curve ye I reduces to a
constant h,. This is indicated by writing

I(x,, %,) = h,. (2.6)
It is important to note that the value of the constant &,
will in general vary from one solution curve to another.

3. DYNAMICAL SYMMETRIES

We wish to obtain mappings of the family I" of inte-
gral curves of (2.1) such that the family T' is mapped
into itself in that I' = I'=T". Such mappings will be
called dynamical symmetries. For purposes of this
paper we shall limit these mappings to infinitesimal
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point transformations of the form

¥ =g +06xt, 6x'=t!(x)0a (5a=infinitesimal),
(3.1)

with associated change in curve parameter ¢ based on a
scalar ¢{x) such that”

df=dt{1 + 2¢[x(#)]5a}. 3.2)

The notation ¢[x(#)] indicates the function ¢ is to be
evaluated along a solution curve. Hence we obtain from
(3.2)

f=t+o6t, ot=t(6a={f20[x(t)]dt+c}sa. (3.3)

If (3.1), (3.2) are to satisfy the symmetry mapping
requirement

yeT—-yeT, I'=T, (3.4)

E_hen we must have the coordinates of the mapped curves
y satisfy an equation of the form (2.4), namely

%= f*(ay, by, 1). (3.5)

It should be noted from the form of (2.4) that the param-
eter ¢ is taken to be the same for all solution curves
veI'. However, in_(3.4) the parameter ¢ will in general
differ for each ¥ I". This follows as a result of the
form of (3.3) from which it is apparent that in general
each curve x(t) determines a specific parameter ¢ for
its mapped image curve 7;(?).

The symmetry mapping condition (3.4) [or (3.5)] is
expressed in terms of (2.1) by the requirement that

E!(%,%,%) =0, (3.6)
where
Hedp/df, ¥ =d%)/dr. 3.7)

The conditions on £ (x) and ¢(x) so that (3.1), (3.2) de-
fine a symmetry mapping will be obtained from (3.6).
We first derive some basic formulas in terms of the 6-
derivative defined below.,

For any function F(x, %, %) we define's

s e 0F s 4 OF (o OF o
GF(x,x,x')——a-;chx + o 0%t t o oxt, (3.8)

where from (3.1) and (3.2) we obtain (to first order in
5a)

3, d dt o o o
XN B 2 N OV ) i A et = ( 14 gd am
Sxi=xt =% dt(x + ¢i5a) FoX = (-~ 2¢x! + £}, x™)ba,
(3.9)

= (= 4¢% =20, % !+ £ amar + & 5)0a,
(3.10)
where we have made use of the relation [obtained from

3.2)]

%: (1+2¢6a)" =1 - 2¢ba. (3.11)
We now expand the left side of (3.6) in the form

E %, %, %)= FE (x +6x,x +06%,% +6%) = E'(x, %, %)

+8E (x,%,%). (3.12)
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From (2.1) and (3. 6) we obtain as a condition for a
dynamical symmetry based upon the infinitesimal map-
ping (3.1), (3.2) the equation

S E/ _2@_5 aﬁéx +:.€6x‘ =0.

(3.13)
To obtain the above mentioned conditions on ¢! and ¢
such that (3.1), (3.2) define symmetry mapping we first

replace in (3.13) the 6x*, 6%f, 6%! by use of the re-
spective formulas (3.1), (3.9), (3.10). Then all %*
terms which appear in the resulting equations are to be
replaced by use of (2.1). The equations so obtained will
in general be of the form

Fi(x, 2, 0,0, 6,8 0. (3.14)

m? ‘E.mk)

Equations (3.14) are considered as identically zero in
the %! variables since otherwise they would impose con-
straints on the dynamical system. The equations result-
ing from the consideration of (3.14) as such identities
will give the symmetry mapping conditions on the £(x)
and ¢(x).!® This procedure will be illustrated in later
sections.

4. RELATED INTEGRAL THEOREM

With reference to the general dynamical systems
(2.1) we prove a related integral theorem which is based
upon the use of the §-derivative. Previous such theorems
were obtained for specific dynamical equations and were
formulated in terms of Lie derivatives.®®

We now assume the dynamical system (2.1) admits a
first integral (constant of the motion) of the form
I(x,%) so that along each integral curve ye I' equation
(2.6) is applicable, In addition, we assume that (3.1),
(3.2) define a dynamical symmetry mapping (3.4). As
a result we have along each integral curve ye T

I(%g, %;) = hp=h, + O, 4.1)
Expansion of (4.1) gives
I(x,, x,) + 61(x,, x,) = h, + bh,. (4.2)

If in (4.2) we further expand 8 by means of a formula
similar to (3.8) and make use of (2.6) we obtain

. oI I . .
6I(x,, x,) = (5;,— £ oy (- 208+ 5f,x’)>,,6a= ¢,da,

c,6a=68h,. 4.3)

We can thus state

Theorem 4.1 (velated integral theorem): If a dynami-
cal system (2.1) admits a constant of the motion (2.6),
and if the system admits an infinitesimal dynamical
symmetry as defined in Sec. 3, then in general there
will exist an additional constant of the motion defined by

x,g + = ,,(—2¢xf+g' )=c. (4.4)

Remark: This theorem includes previous statements
of related integral theorems.% 8
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5. APPLICATION 1: NEWTONIAN FORM OF THE
DYNAMICAL EQUATIONS

As a first application of the methods discussed in
Sec. 3 (for obtaining conditions for dynamical sym-
metries) and Sec. 4 (for obtaining constants of the mo-
tion) we consider those systems whose dynamical equa-
tions may be expressed in what we will refer to as the
“Newtonian form”

DAyt

7 (5.1)

Ei=

N
+ 2P, .. #lese Hm=0 (Ref. 17).
mso J1°ttim

In (5.1) the tensor coefficients P} iy (which are com-
pletely symmetric in the lower 1nd1ces) are functions of
the coordinates only, and

D2yt 2 LT ()5 Sk
e +r (x)x X*, (5o2)
where I'!, is the Christoffel symbol based upon the
metric tensor g,, of the configuration space. This form
of Et embraces many important types of dynamical sys-

tems in both relativistic and nonrelativistic mechanics.

To obtain the conditions for a dynamical symmetry
[as indicated by (3.13)] based on (5.1) we first
evaluate

sz

s ZE o + i) = (4025 4 g1 e

(5.3)
+ (0 ™+ 20 £ + £y~ 2‘7’.;52)%;&)5“,

where use has been made of (3.1), (3.8), (3.9), (3.10).
Next we obtain

62;‘613,1,,,, %1oas xfm—Z)[P,r mat
(5.4)
+ m(— Zd)a?m + Ek;.fm) P; 1""m'1k]xa!1 oot &Jm-l;cjmﬁa,
If now we substitute from (5.3) and (5.4) into
sz
OB =0 +aE | Pl ovegp¥iie e Hm=0 (5.5)

and eliminate the %' terms by means of (5.1), we obtain

N
14
2 (&P, -

m=0

Z(m 2)¢ i1e0edm ]x\““"" ;‘J"‘

+&, T ~01d,, = 6i0,,+&,Ph)i xt= (5.6)

where (£, indicates Lie derivative with respect to the
vector £f)®

B, =t +em Dl +EnTl, -

£ep.§1"'fm=

- ¢, In + enT (5.7)

from?

4 ] { '] 4 %
Pll-".fm'kE +Pk!2'“1m 5n'l + Pf1k13"'lmg..lz

oo -
toor F Pl bl

P} it (5.8)

and where )’ means omit » =2 in the sum.

As discussed in the comment following (3.14) we set
the coefficients of the x/1¢++ x/m terms equal to zero and
obtain as conditions for a dynamical symmetry of (5.1)
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&P, ~2m~2)¢P .., =0, m#2, (5.9)
8T, - 010, ~ bl , +8 P, =0. (5.10)
The first three cases of (5.9) [m=0,1,3] are as
follows:
m=0: g,P+4¢P = (5.11)
m=1: 8Pi+2¢Pi= (5.12)
m=3: 8P}, - 2¢P;, = (5.13)

To specialize (5.1) to the case of a conservative
dynamical system we take N=0 and P'=g"V , [where
V(x) is the potential energy] which reduces (5 1) to

D%yt

-+ ij

az T8
The symmetry conditions (5.9), (5.10) [the appropriate
form of (5.9) is (5.11) for this case] become®®

(5.14)

4¢gHV  + gl 'V, 8 - g*V £l =0 (Ref. 20), (5.15)

&I, =6l +06io ;. (5.16)

As an application of Theorem 4.1 (related integral
theorem) for this case, we consider the deformation of
the energy integral

I(x,%)=3g,;%'%! + V(x) = const (5.17)

with respect to the symmetry vector ¢! [and associated
scalar ¢(x)] which satisfies (5.15), (5.16). We obtain
from (4.4) the derived constant of the motion

I=3(8,g,, - 40g,,)x' %’ +V , & = const. (5.18)

It should be noted that if (5.15) is satisfied by a mo-
tion vector &!, i.e., if

£,8,= 85t §:=0, (5.19)

then it follows that ¢ =0. It can be shown that (5.15) re-
duces to [if use be made of (5.19)]

(V',g‘)”,:O, (5.20)
which implies
vV, ti=k, (5.21)

where k is constant (throughout the space).

6. APPLICATION 2: HAMILTON'S EQUATIONS'®

In this section we choose E? of (2.1) to be all first
order equations which have the form of Hamilton’s
equations??

BA=i4 —nfRH (6.1)

where H(x) the Hamiltonian, expressed in terms of the
2n coordinates x* of phase space, which are defined in
terms of the generalized coordinates ¢* and their con-
jugate momenta p, by the relation

(et ..., amaet, L )= (g, ..

=0, A,B=1,...,2n,

2@ Dy esby). (6.2)
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The symplectic matrix [748] is defined by23

(6.3)

Based upon the dynamical equation (6.1) we shall
utilize the method of Sec. 3 (as applied to first order
equations) to formulate conditions which the mapping
vector £4(x',...,x?") and associated scalar ¢{(x',...,x%")
must satisfy such that (3.1), (3.2) (with x! — x%) define a
dynamical symmetry mapping within the phase space. It
will then be shown that the existence of such symmetries
leads in general to associated constants of the motion. In
addition, we shall show that the related integral theorem
in phase space may be considered as a generalization of
the well-known Poisson theorem on constants of the
motion,

We first substitute from (6.1) into (3.13) and make
use of (3.8), (3.1), (3.9), and (6.1) (to eliminate the
x* terms) to obtain as the condition for dynamical
symmetry the equation?*

_2¢’77ABH,B+TFB gA,cH,a ‘TIABH,BC§C=O (6.4)
By taking the divergence of (6.4) we immediately
obtain

M (€, - 2¢) (H 5 =0, (6.5)
which implies that £, ~2¢ is a constant of the motion.?
Hence we may state

Theorem 6.1: If £4(x) and associated ¢(x) satisfy the
dynamical symmetry equation (6.4), then

B, -20=F (6.6)
is a constant of the motion of the dynamical system
(6.1).

We now give an alternative approach which shows that
(6.6) follows as a consequence of the invariance under
dynamical symmetry mapping of the divergence-free
character of the integral curve congruence defined by
(6.1). To do this we first rewrite (3.9) in the form

XA = A+ (= 2034 + £A 5M)5a. (6.7)
We form the divergence of (6.7) to obtain?®
B4 =0 [ + (- 2634 + 4,100 (6.8)
"From (6.8), by use of (3.1) we find
it =0, A+ (8, - 20) 528 - 200,74 ]ba. (6.9)

It follows immediately from (6.1) that 3,%4 =m2H ,,
=0; hence (6.9) reduces to

3,54 =%(51A-2¢)5a. (6.10)

Since the demand for dynamical symmetry [refer to

(3.6)] requires the left side of (6.10) be zero, if follows
that (6.6) holds. Alternatively, from Theorem 6.1 it
follows that the right side of (6.10) vanishes which shows
the left side is zero; this in turn verifies the invariance
of the divergence-free character of the integral curves
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of (6.1) under dynamical symmetry mapping.

We may utilize (6.6) to evaluate the change in differ-
ential path parameter which is associated with the sym-
metry mapping defined by the vector 4. By use of (6.6)
and (3.2) we thus obtain

di=adt{1 + (&4, - k)sal. (6.11)

We give now a second method for obtaining constants
of the motion concomitant with the existence of dynam-
ical symmetry mappings of (6.1). If (6.4) is contracted
with H ,, then the resulting equation may be written in
the form

7P4A(6H) zH , =0, 6H=H t°0a, (6.12)

which implies 6H/6a is a constant of the motion. This
allows us to state

Theovem 6.2: If £A(x) satisfies the dynamical sym-
metry equation (6.4), then in general the dynamical
system (6.1) will admit the concomitant constant of the
motion

OH

_EH(x),AgA-

5 (6.13)

We next consider the related integral theorem 4.1 as
applied to phase space. Assume then that the dynamical
system (6.1) has a constant of the motion of the form
I(x). Theorem 4.1 then states that

ol
o _ 6.14)
60 I’A &4 (
is also a constant of the motion, provided £ is a solu-
tion of (6.4).

Since the dynamical equations (6.1) were based upon
a Hamiltonian which was assumed to have no explicit
time dependence it immediately follows that H(x) is a
constant of the motion. We may therefore take I(x)
=H(x) in (6.14). This gives a second derivation of
(6.13).

If the dynamical system (6.1) admits an »-parameter
dynamical symmetry group defined by the vectors £4,
a=1,...,7, then the first and second derived integrals
1,, I, satisfy the relation®

Igo = Iog= Ciolys (6.15)
where I,=38,I/8a,, I,=0,,/6a,, and CJ, are the
structure constants of the group.?”

It can easily be shown that the (Poisson) vector
Elpy =M 5, (6.16)

where M(x) is a constant of the motion, is always a
solution of (6.4) for the choice ¢=0. For such a sym-
metry vector (6.14) takes the form
74
o =l M, (6.17)
which is Poisson’s theorem on constants of the motion.*
Hence we may consider the phase space formulation of

the related integral theorem as a generalization of
Poisson’s theorem.

As a simple illustration of Theorem 6.2 we consider
an n-dimensional isotropic harmonic oscillator in an n-
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dimensional Euclidean configuration space referred to
rectangular coordinates. For this case the Hamiltonian
H(x) takes the form

H=1%6,,x4%%, A,B=1,...,2n. (6.18)

It can be shown for such a Hamiltonian that a solution to
(6.4) is?®

PA=BAyd $=0, (6.19)
where the 2rnX 2z matrix [B4] is given by
al | b
[B4]= , (6.20)
o]

where the arbitrary constants a} and b} are the elements
of nXn matrices. It can be shown that (6.19) defines a
2n2-parameter group of dynamical symmetries.

It now follows from (6.13) by use of (6.18), (6.19) that
this dynamical system will have the constants of the
motion

oH

5a =Ha g4 = BAxAxC= const.

(6.21)
By use of (6.20) and (6.2) Eq. (6.21) can be written
in the form
8H _ t(qiq? +p.p,) +bi(gip, — a'p,) = const (6.22)
sa _U\q P, i\a’p; —q’'p;) = const. .
We recognize by inspection of (6.22) the well-known
symmetric tensor and angular momenta constants of the
motion associated with the oscillator problem.” It is of
particular interest that these constants of the motion
may be considered as deformations in the Hamiltonian
as a result of dynamical symmetry mappings.

For the particular symmetry vector (6.19), (6.20) the
corresponding constant of the motion (6.6) predicted by
Theorem 6.1 is trivial. However, the general symmetry
vector solution of (6.4) for this problem leads to non-
trivial constants of the motion (6.6).28

7. APPLICATION 3: LAGRANGE’'S EQUATIONS

Next we shall base our formulation of dynamical
symmetry conditions on dynamical equations which we
assume to have the form of Lagrange’s equation

_O0L d 3L 3L 3L ., 3L -
1550 " dl 30 — o "3 Y o r =0
od Tdt 3% ax’  amox* | axlox

where L=L(x!,x!). For such Lagrangians it is well
known that the dynamical equation (7.1) admits the con-
stant of the motion

9L «

E(x,x)=—sxt - L.
(x, %) PyiEd L

E (7.1)

(7.2)

We shall show that when based upon Lagrange’s
equation (7.1) the basic condition for dynamical sym-
metry (3.13) may be expressed in an interesting alterna-
tive form. This new form immediately reveals the
existence of constants of the motion concomitant with
these dynamical symmetries and in addition allows a
direct comparison with the Noether approach to the
formulation of dynamical symmetries and associated
constants of the motion.,
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We first formulate the conditions (as outlined in Sec.
3) that the infinitesimal mapping (3.1), (3.3) define a
dynamical symmetry of the system (7,1). Substitution of
(7.1) into (3.13) with use of (3.1), (3.9), (3.10) gives

2L 33L 3L
E — - 5 °k < ¢
O, (ax'axf axtaniont”  axtamo kx)“’“
2L BL ., 2L B¥L .
+ . 7 T Ae ® xX° - S - ° ) xk
oxtox! oxtoxioxk oxloxt oxtoxioxt

X (—2¢5éi— £ xm)0a
ax'a°i ——[4¢x +2¢ amxt

- g At~ £ mlsa=0, (7.3)

We now show that (7.3) may be expressed in a form
which allows further insight into the nature of this
dynamical symmetry condition. By use of (3.1), (3.8),
and (3.9) we first obtain

L, 3L . .
=|— + —5 (- i+ gt gm 7,4
oz (Fg e+ S- 208 + e1,) oa, (7.4)
and define the function N (which we refer to as the
Noether function) by
N(x,%)6a=6L +2pLba. (7.5)

It now follows by a straightforward calculation that
(7.3) may be expressed in the above-mentioned alterna-
tive form [by use of (7.1)]%®

337+ 2¢,E=0, (7.6)

where E(x, %) is defined by (7.2).
The above may be summarized by stating

Theorem T.1: A necessary and sufficient condition that
an infinitesimal transformation (3.1), (3.3) define a
dynamical symmetry of the Lagrangian dynamical sys-
tem (7.1) is that (7.6) hold for all solutions of (7.1).

We next assume that Lagrange’s equation (7.1) admits
a dynamical symmetry mapping as described by
Theorem 7.1. It now follows from the contraction of
(7.6) with x7 that

oN ,;, d[oN do
o~ T dt (a ) +25E=0.
By use of (7.2) and the relation

dN aNxJ aNJ.C
dt oxd axi "

we may express (7.7) in the form

d
at

(7.7)
(7.8)

(N——-.—x’ +2¢E> (7.9)

Expansion of the term in parentheses in (7.9) by use of
(7.2) and (7.5) gives the constant of the motion

3(6L) P
ax’

5L. ‘ (7.10)

Hence we may state
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Therem 7.2: If a Lagrangian dynamical system (7.1)
based upon L(x, %) admits a dynamical symmetry as de-
scribed in Theorem 7.1, then in general the system will
admit a constant of the motion of the form (7.10).

To further our understanding of the meaning of the
constant of the motion (7,10) we note that if (7.4) is
used in (7.10) the resulting expression may be expanded
and regrouped to give

3 (GL)
ox!

-8L= é(m\,x’ L)‘const (7.11)
We thus find that the constant of the motion (7.10) is the
deformation of the energy integral under the dynamical
symmetry mapping described by Theorem 7.1. It is

now apparent that (7.10) could also be obtained by the
related integral theorem 4.1.

We illustrate the Lagrangian formulation of the dy-
namical symmetry equation (7. 6) by choosing a
Lagrangian which characterizes a conservative dynam-
ical system®:

L(x,x)=3g,;%% - V(x). (7.12)

By use of formulas (3.1), (3.8), and (3.9) we find
that 6L based upon (7.12) is of the form
SL=[5(8g,, - 4¢g, )75~V ;& ]oa, (7.13)
and [refer to (7.5)] the Noether function is given by

Noa=[5(8,g,, - 208, )% %* - 20V +V ,£)]6a.  (7.14)
From (7.2) and (7.12) we have
E=3g,x'x*+V, (7.15)

and it then follows by use of (7.14), (7.15), and (5.14)
(which is used to eliminate %*)*! that the expansion of the
symmetry condition (7.6) leads to

(8Tt —06i¢ ,~60 )it + (ApghV +g4 iV, &

_ngV”lgi )=0.
(7.16)

Since (7.16) must hold as an identity in the #*’s, we
again obtain (5.15) and (5.16) as the conditions on £
and ¢ for dynamical symmetry.

It now follows with L(x, %) given by (7.12) that the con-
comitant constant of the motion (7.10) associated with
the existence of the dynamical symmetry (7.6) is the
derived constant of the motion (5.18), as would be
expected.

We give another illustration of the Lagrangian formu-
lation of dynamical symmetry conditions and associated
constants of the motion by taking3?

L(x,%)=3n,,44%% = H(x*), A, B=1,...,2n, (7.17)

where the matrix [7,,] is the inverse to the matrix
[742] [defined by (6.3)], H(x%) is the Hamiltonian, and
the x* are defined by (6.2).% Based upon (7.17), the
formal expansion of Lagrange’s equation

_oL d 3L _
Ee=3@~arare =0

gives Hamilton’s equation (6.1).

(7.18)
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The condition (7.6) for a dynamical symmetry of
Lagrange’s equation when based upon L gives by (7.17)
requires that

= 20Mcp#® = nye 5‘,"3’;8 - 775;15?0’;8 ~H ot

(7.19)

To obtain the final form of the symmetry condition we
use (6.1) to eliminate %8 terms in (7.19). The resulting
equation is easily shown to be equivalent to (6.4) (if use
be made of the relation 1,,7%¢=285).

Application of Theorem 7.2 based upon (7,17) and a
symmetry veetor £* which is a solution of the dynam-
ical symmetry condition (6.4) gives [from (7.10)] the
constant of the motion

H ,t4. {7.20)

It should be noted that the left side of (7.20) is pre-
cisely 6H/5a. This is to be expected since H(x%) is a
known constant of the motion and the related integral
theorem in the form (6.14) with I=H gives (7.20).

8. NOETHER SYMMETRIES AND THEIR
RELATIONSHIP TO DYNAMICAL SYMMETRIES
FORMULATED AT THE LEVEL OF LAGRANGE'S
EQUATIONS

In this section we make a comparison between the
dynamical symmetry conditions and concomitant con-
stants of the motion formulated directly at the level of
Lagrange’s equation (as described in Sec. 7) and those
which are obtained from the well-known Noether
identity.® We shall show that even for the relatively
simple case of a conservative dynamical system these
two approaches lead to considerable differences in
symmetries and associated constants of the motion.

We give first a short derivation of Noether’s identity
which is independent of the integration processes of
Hamilton’s variational principle. For purposes of
making the above-mentioned comparisons we shall base
this derivation upon mappings of the form (3.1), (3.3).

We take then the Lagrangian in the form L{x!,x!) and
define

Soxl dtow ®.1)

If we consider

dL _ L. L.,
@ o ok

then from (8.1) and (8.2) we obtain

d faL.,
dt " x
If (8.3) is multiplied by 6¢ [as defined by (3.3)] and the

resulting expression is subtracted from the right side of
(7.4), we obtain

8.2)

L) +Lxt=0. (8.3)

5L=—( (EE) - 20L + 2L 3F gf +2L T g* m~L x‘g‘jﬁa,
(8.4)
where E is defined by (7.2). Equation (8.4) may be re-
written in the form of Noether’s identity3?
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—Hh‘ig‘o&C:O'

d

N= a(%&‘—Eﬁ‘) ACEEL ) (8.5)

where N is defined by (7.5).

Since along a dynamical path L,=0, it follows that if
N(x, %) can be expressed in the form?®

Néa=- ——(zm), 6%(x) = 2(x), £ (x)da, (8.6)
then from (8.5) we obtain
Zld? (—.—g ba— Eg°6a+69) 0. 8.7

We refer to (8.6) as the Noether symmetry condition
and to (8.7) as the concomitant Noether constant of the
motion,

We next consider the problem of obtaining specific
conditions on the Noether symmetry vector £ defined by
(8.6) for the case of a conservative dynamical system
with Lagrangian defined by (7.12). From (7.14) and

(8.6) we immediately obtain

1(Bg,, - 20g,)xix +(Q &) # -2V +V £)=0.
(8.8)

Since (8.8) is not to act as a constraint on the dynam-
ical system we must have

£,8,,-2¢g,,= 0, (8.9)
20V +V £ =0, (8.10)
@,,&),,;=0. (8.11)

From (8.11) and (8.6) we see that d(5Q)/dt=0 and
hence from (8.6) we must have N=0. From the form of
(8.11) we observe that any solution ¢! of (8.9}, (8.10)
will lead to a differential equation which in general ad-
mits a solution for &. Conversely (8.9), (8.10), (8.11)
imply (8.8) and (8.6).

We summarize the above results by stating

Theorem 8.1: A conservative dynamical system de-
fined by a Lagrangian (7.12) will admit a Noether sym-
metry [defined by (8.6) and based upon infinitesimal
mappings (3.1), (3.3)] if any only if (8.9), (8.10), and
(8.11) are satisfied. These conditions imply N=0 and
88 (x) == const (throughout space). From (8.11) and (8.7)
we may also state the following:

Corollary 8.1: If a conservative dynamical system
with Lagrangian (7,12) admits a Noether symmetry as
described in Theorem 8.1, then it admits a constant of
the motion

oL

Py £l E&-O,

3 (8.12)

where E is defined by (7.2) and £° by (3.3).

We now investigate the relationship between the
Noether symmetry condition (8.6) and the condition
{7.6) for a dynamical symmetry based directly at the
level of Lagrange’s equation. We first obtain the con-
dition that a Noether symmetry be a solution of the
dynamical symmetry equation (7.6) for the general case
in which L=L(x!, %%). It immediately follows from (7.6)
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by use of (8.6) (since 5R is a function of the coordinates
only) that

¢ ,E=0. (8.13)
The dynamical symmetry condition (7.6) was formulated
for an unconstrained dynamical system which implies
that E is not restricted to any prescribed value. Hence
(8.13) requires ¢ ,=0, i.e., ¢=const. Conversely
with ¢ = const (7.6) is obviously satisfied by a Noether
symmetry (8.6).

The above may be summarized by stating

Theorem 8.2: For an (unconstrained) dynamical sys-
tem characterized by a Lagrangian L(x, x) a necessary
and sufficient condition that a Noether symmetry [de-
fined by (8. 6) and based upon infinitesimal mappings
(3.1), (3.3)] satisfy (7.6), the condition for a dynamical
symmetry b: 1 directly at the level of Lagrange’s
equations, is that ¢ =const in (3.2) [and (3.3)].

If in Theorem 8.2 we now specialize L(x, x) to the
form (7.12) which is characteristic of a conservative
dynamical system, it then follows by use of Theorem
8.1 that we may state

Corollary 8.2: For a conservative dynamical system
characterized by Lagrangian (7,12) necessary and suffi-
cient conditions that a Noether symmetry vector, as de-
scribed in Theorem 8.1, satisfy the (unconstrained) con-
dition (7.6) for a dynamical symmetry based directly at
the level of Lagrange’s equations are that (8.9), (8.10)
be satisfied with ¢ =const. Such a symmetry is at most
a homothetic motion.

It is of interest to note that conditions (8.9), (8.10)
(with ¢ not necessarily constant) are the conditions
that the mapping (3.1), (3.2) define a natural trajectory
collineation of the zero energy trajectories.®

Next we turn our attention to the comparison of the
constants of the motion which are concomitant to the
two symmetry approaches considered above,

Based upon the mappings (3.1), (3.3) it is seen [we
assume here the general case in which L =L(x,x)] that
the Noether constants of the motion resulting from (8.7)
will in general be time-dependent (as a result of the
time-dependence of £°) whereas the constants of the
motion (7.10) concomitant with the dynamical symmetry
condition (7.6) are independent of time.

We now wish to compare time-independent constants
of the motion which may be obtained from the Noether
formalism with those given by (7.10). To obtain such
(Noether time-independent) constants of the motion
from the Noether formula (8.7) we must limit the as-
sociated dynamical mappings (3.1), (3.3) to those for
which ¢=0.

To further assess the implications of this restriction
and to simplify the above-mentioned comparison we now
specialize the dynamical system being considered to a
conservative one with Lagrangian given by (7.12). The
resulting constant of the motion thus obtained from the

Noether approach is found from (8.12) to be
(Ref. 35), (8.14)

where from (8.9), (8.10) it follows that the associated

gljgi;:“ - c(%g“;C‘}.C‘, + V), c=const
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Noether symmetry vector £ must satisfy Killing’s
equation
£.g,;= byt £y =0 8.15)
and
Vv, & =0. (8.16)

The second term in (8.14) is the total energy, a con-
stant of the motion. 3 It therefore follows that the first
term is also a constant of the motion which may be
expressed in the form

g, %' =const. (8.17)
Thus for a conservative dynamical system based upon
Lagrangian (7.12) we find the time-independent Noether
constants of the motion associated with the Noether
symmetry vectors £! to be the well-known linear first
integrals (momenta integrals) (8.17).

In contrast to these results it will be recalled that for
the same conservative dynamical system we found
(refer to Sec. 7) from the formulation of the symmetry
conditions directly at the level of Lagrange’s equations
that the symmetry vector £ must satisfy (5.15), (5.16)
and it then followed that the concomitant constants of
the motion were given by (5.18). We note that (5.18) is
in general a quadratic integral and in general is not the
total energy.

As a specific illustration of these contrasting results
we consider the case of a three-dimensional isotropic
harmonic oscillator. For such a dynamical system it
can be shown that the vector & which is determined by
(5.15), (5.16) defines a 9-parameter group of affine
collineations AC,.” This AC, contains three rotations
and six proper affine collineations. Based upon the
proper affine collineation symmetry vectors we find the
concomitant constants of the motion defined by (7.10)
[or equivalently by (5.18)] to be the well-known sym-
metric tensor constant of the motion [refer to (6.22)],
whereas the time-independent Noether symmetry condi-
tion (8.15) is not satisfied by these proper affine col-
lineation symmetry vectors and hence (8.17) is inappli-
cable. On the other hand, the rotation part of the dynam.
ical symmetry which satisfies both (5.15), (5.16), and
(8.13) accounts for the constant angular momenta by
use of (8.17) and leads to a trivial result in (7.10).%

It is now apparent for the purpose of determining
time-independent constants of the motion of a conserva-
tive dynamical system [with Lagrangian (7.12)] that
those dynamical symmetry mappings [of the type (3.1),
(3.3)] based directly at the level of Lagrange’s equa-
tions are more general than those based upon the appro-
priate Noether symmetry mappings. As a result of this
added generality in the dynamical symmetry mappings
we obtain [through (7.10)] time-independent constants
of the motion not associated with the Noether identity.

9. DYNAMICAL SYMMETRIES BASED UPON THE
HAMILTON-JACOBI EQUATION AND THEIR
RELATION TO NOETHER SYMMETRIES

In the preceding sections we obtained the conditions
for dynamical symmetries by requiring that infinitesi-
mal point mappings with associated changes in differen-
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tial path-parameter map the set of solutions of a dynam-
ical equation into itself. Thus far our formulation of
symmetry conditions has been based directly at the
level of the dynamical equations, which we have taken

to be of the form of Newton’s, Hamilton’s, or
Lagrange’s equations.

It is well-known that the Noether symmetry condition
(8.6) may be interpreted as defining a dynamical sym-
metry mapping at the level of Hamilton’s variational
principle, even though we found such a mapping in
general did not satisfy the conditions for a dynamical
symmetry which were formulated at the level of
Lagrange’s equations. As a means of interpreting the
Noether mappings as dynamical symmetries directly at
the level of the dynamical equations we now turn our
attention to the transformation theory of mechanics—
namely the Hamilton—Jacobi theory. For simplicity we
shall limit our considerations to conservative dynamical
systems characterized by Hamiltonians of the type®®

H(x', p)=38" (Wpyp; + Vix) ©.1)
in which case the Hamilton—Jacobi equation takes the
form

8S(x,t) as(x,?)
28— Taxt | T ax

where S(x,t) is Hamilton’s princ1pal function.

It will be shown that the demand that the set of solu-
tions of the Hamilton—Jacobi equation maps into itself*
leads to the Neother symmetry conditions. This (not
entirely unexpected) result will allow us to interpret the
Noether symmetry mappings as dynamical symmetry
mappings demonstrable at the level of the dynamical
equations. By use of the Noether identity it then follows
that the Noether constant of the motion (8.12) may be
considered as a concomitant of dynamical symmetries
based upon the Hamilton—Jacobi equation.

as(x 1)

+V{x) + —== =0, (9.2)

As a first step to determine infinitesimal point map-
pings of the form (3.1), (3.3) which map the set of
solutions of (9.2) into itself, we define

3S(x,t) 3S(x,t)
28 =5 7 axt  oxl

aS(x, t)
ar ’
9.3)
and note that as a result of a mapping defined by (3.1),
(3.3) Eq. (9.3) takes the form

3S(%,7) as(x 2]
%t ox

J[s,ps,tyx] V( )+

8S(%,7)
of

9.4)

J8,7,5,7, 7= 24 ()50 +veE) + B850

In (9.4) we next express ¥, f in terms of x, ¢ by
means of (3.1), (3.3) and obtain

S(x +6x,t+6¢)

JIS 7,5 7, %] =2g" (x + 6x) (8 st (6% - g':,aa))

38 (x +6x,t+68) ., )
( Py (67 - £m5a)

+V(x+6x)

+aS(x+6x t+06f)

T (1-2¢(x)6a).  (9.5)
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If (9.5) is expanded in powers of &a (to first order),
we obtain

IS 3,5¢,%1 =JS ,,5,,, %] +8JS .S ,, %], (9.6)
where
6J=4(8,gY)S ;S ,6a+g"S ,(6S),; +(65),, - 2¢S,,6a

+V ,t4a, (.7
with

8S=(S £ +S ,£)%6a (9.8)
and

B8t = giE - £hE, - g8, ©.9)

Consider next the expression
JI(S+38S),,,(S +5S),,,x]=3g"(S +58),,(S +5S) , + V(x)

+(8+39),, 9.10)
Expansion of (9.10) to first order in 6a leads to
JI(S+8S),,,(S+0S),,,x]=JIS,,,S ,,x]+6*J(S ;.S ,,x],

(9.11)
where

o*J1S,,,S,,,¥1=8"S,,(65),, + (65),, (0.12)

We now formulate the conditions for a dynamical
symmetry mapping based upon the Hamilton—Jacobi
equation by requiring that

JIS,,,S,, k1 +8Jd[S S, , x]=J(S +35S) ,, (S +6S) ,,x],

(9.13)
hold for all functions S(x, #) which satisfy (9.2).

By use of (9.11) we find that (9.13) requires §J=5*J
and hence by (9.7) and (9.12), we obtain
1(,g")S S, —2¢S, +V £ =0. (9.14)
We now eliminate the S, term in (9.14) by use of (9.2)
and obtain

382" +2¢gY)S S ,+20V+V =0, (9.15)
Since (9.15) must not act as a constraint on the

Hamilton—Jacobi equation (9.2) we must require that

(9.15) hold identically in the quantities S,;. We thus

obtain as the requirements for dynamical symmetry

the conditions

8,87 +20g" =0,
20V +V ,£4=0

(9.16)
(9.17)

It immediately follows [by use of £,g" = - glgi*g, g
in (9,16)] that (9.16), (9.17) are the Noether symmetry
conditions (for a conservative dynamical system) (8.9),
(8.10), respectively.

Conversely, if the infinitesimal point mapping (3.1),
(3.3) satisfies the Noether symmetry conditions (9.16),
(9.17), then (9.13) will be satisfied.

We thus have
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Theorem 9.1: For a conservative dynamical system
with Hamiltonian (9.1) a necessary and sufficient condi-
tion that the infinitesimal transformation (3.1), (3.3)
map the set of solutions of the Hamilton--Jacobi equation
(9.2) into itself [in that (9.13) holds] is that the mapping
be a Noether symmetry mapping, i.e., the transforma-
tion must satisfy (8.9), (8.10).

By use of the Noether identity we may now associate
with the existence of the above described dynamical
symmetry formulated of the level of the Hamilton—
Jacobi equation a concomitant constant of the motion.
Hence we may restate Corollary 8.1 in the following
form.

Corollary 9.1: If a conservative dynamical system
with Hamiltonian (9.1) admits an infinitesimal trans-
formation (3.1), (3.3) which maps the set of solutions
of the Hamilton—Jacobi equation into itself as defined
in Theorem 9.1, then there will exist a concomitant
constant of the motion which may be expressed in the
form (8.12).
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10 this section we expand and elaborate on basic results given
in Ref. 8.
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noncanonical symmetry mappings and concomitant constants
of the motion.

2We assume Egs. (2.1) are all of the second order or all of the
first order. We use second order equations to illustrate the
basic methods which we wish to develop.

BThe interpretations of the x! and their assigned index ranges
for these specific types of dynamical equations will be made
in the appropriate sections to follow.

H4yelocity dependent constants of the motion are to be associat-
ed with Eqs. (2.1) which are of second order. See Footnote 12.
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Bunless otherwise indicated the Einstein summation convention
will be used. Also small italic indices will have the range 1
through » (unless otherwise indicated). A comma (,) indicates
partial differentiation.

®Equations (3. 14) will usually be in the form of polynomials
in the x!, in which case the symmetry conditions are easily
obtained.

"The first term in the summation corresponding to m =0 will
be denoted by Pt.

BFor a general discussion of Lie derivatives, see K. Yano,
The Theory of Lie Derivatives and Its Applications (North-
Holland, Amsterdam, 1957).

BEquations (5.15), (5.16) were derived in Ref, 7 by an alterna-
tive method. A detailed application of these equations to the
Kepler problem and isotropic harmonic oscillator is also
given in Ref. 7.

Acovariant differentiation with respect to I'}, is indicated by a
semicolon (;).

YFor applications of (5.18) to the problems mentioned in Ref.
19, see Ref. 7.

2Capital indices will have the range 1, 2, ..., 2n.

BHere 0, and I, are nth order zero and identity matrices,
respectively.

%An alternative derivation of (6, 4) is given in Ref, 8, where it
is shown that in general the dynamical mappings defined by
(6.4) are not canonical. A similar equation (in which ¢ =0)
was obtained in Ref, 11 for the case of a time-dependent ¢4,

%A similar constant of the motion with ¢ =0 is given in Ref, 11,

%The notations 9,, 9, indicate partial differentiations with re-
spect to x4, ¥4, respectively.

Y"The deformation operator 6, is defined in terms of the vector
£4.

ZaAmga,renera\l solution to (6.4) for this problem has been obtained
and will be published elsewhere.

®In Sec. 8 the symmetry conditions (7. 6) will be compared
with the Noether symmetry condition (8. 6).

30This choice will allow a comparison with the dynamical
symmetry conditions based on the “Newtonian form” of the
dynamical equations as discussed in Sec. 5 and will also be
useful in our comparison with the Noether approach of Sec.
8.

31Note that Lagrange’s equation (7.1) expands to the form
(5. 14) by use of (7.12),

2¢, W, Kilmister, Hamiltonian Dynamics (American Elsevier,
New York, 1965),

33In the remainder of this section we shall again assume all
capital indices range 1,..., 2z and employ the notation of
Sec. 6.

341t can be shown that if the mapping (3. 1), (3.3) is assumed
to have the more general form x*=x!+£¥(x, H)6a, T=t
+¢%x, H)6a and the Lagrangian L taken in the form L
=L{x,x,#), then a similar derivation to that given above again
leads to the Noether identity (8. 5), but expressed in terms
of the generalized mapping vectors.

3%Note that the constant ¢ is the same as appears in (3. 3).

36Si.nce the energy integral is independent of the mapping vector
¢t this constant of the motion may be regarded as arising
from a time-translation 6¢=céa.

37A similar analysis of the Kepler problem shows that the
Runge—Lenz vector to be given by (7. 10) and the angular
momenta given by the Noether formula (8.17). See Ref. 7.

38This Hamiltonian corresponds to Lagrangian (7.12).

33The question of mapping partial differential eguation solu-
tions into themselves has also been considered by R. L.
Anderson, S. Kumei, and C. E., Wulfman, Phys. Rev. Lett.
28, 988 (1972); J. Math. Phys. 14, 1527 (1973).
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Starting from the metric in harmonic coordinates for a test particle m, around a heavy particle
m,(m,»m ) at rest, the EIH Lagrangian is recovered by making a Lorentz transformation, followed
by a canonical transformation and an appropriate symmetrization in the two masses. This raises the
question of a special relativity content in general relativity, a feature not directly implied by the

general covariance.

1. INTRODUCTION

The laws of gravitation in Einstein’s general relativity
are generally covariant with respect to any change of
coordinates; in any set of coordinates they will look like
R,, - 3g,,R=871Gc™*T,;, where R, is a certain function
of the g,, and their derivatives, up to second order. ds?
=g,,(¢) dg*dq’ is postulated to be an invariant.

General covariance was of much value to Einstein,
and inspired the name of his theory. But it is now ad-
mitted that general covariance in itself is physically
empty, to the extent that the equations of any theory
could be cast in covariant form. This format invariance
gives the equations of motion, for example, the same
aspect in any set of coordinates, but the functional de-
pendence of the accelerations on their arguments will
be a priori different in each set of coordinates.

However, we observe that, for a certain family of
coordinates, we do have functional invariance of the
accelerations with respect totheir arguments, under
Lorentz transformations, for the case of two masses,
up to order c~%. Einstein, Infeld, and Hoffman (ETH)*
and, later, Fock? showed there existed a common
Lagrangian for the problem of two gravitating particles,

1 1 vi 1 1 v
L= Emlv’i+ 'gml'c—; + '2_m2v§+ 'é'mz'c%

+ atte [1 + o (3v§+ 32Ty e v, - ——-—r°v;§°v2)]

_GPmymy(m, +my)
2c%/° :

On the other hand, Currie and Hill® have given the
conditions on a dynamics:

&?ry(8) dr,(t) dry(t)
T=s, [ro, 40, 4],

guaranteeing that, after a Lorentz transformation, it
will look like

i) _ [ dri(t) dra'(t')]
e = (MW, s T |

where the a’s are the same functions of their arguments
as beforethe transformation. World line invariance is
postulated to obtain these conditions. They put all
Lorentz frames on the same footing, and privilege none
of them. This special relativistic covariance is a strong
requirement, while general covariance is not.

It is a fact that the accelerations obtained from the

EIH Lagrangian,

Gm m,r Gm
ma, == 3 + 17;12
7 Sy

JRNIY )
x[r (—v§+4v1°v2—2v§+%(i1%3)—)

G*m my(5m, +4m,)
c Zr 4 r’

+ (v, ~v,)(dre v, -3r -vz)J +

satisfy Currie—Hill conditions up to order c¢-%:
1
(8y, +0y,) 2, = el RS R R A AL N

+ (v, ~18,)° 0, 2, - 2v,a, - alvl] ,

as one can check by direct calculation.

The original computations for obtaining the EIH
Lagrangian being quite lengthy, the preceding result
suggests how to recover it in a simple way by starting
from the known metric for a test particle around a heavy
particle at rest, in harmonic coordinates (the choice of
this particular set will be justified), and making a
Lorentz transformation for setting the heavy body into
uniform motion. A canonical transformation will sym-~
metrize the Lagrangian in the velocities of both parti-
cles. Symmetrization in the two masses, to yield a
Lagrangian usable when the two masses are comparable,
requires a certain care. The end result is the EIH
Lagrangian,

2. THE EIH LAGRANGIAN FROM THE CASE OF ONE
BODY AT REST

The metric for a test particle m, in the field of a
spherically symmetric, heavy particle m,(m,>m,) is,
in harmonic coordinates (r,= Gm,c™?),

ds?=c2dp T=0e _ 7570 4y

rtry, v—=7,
— (7 +7,)%(d6? + sin%8 de?)
—e2grlt=Y 11 7+7 (rov1)2
- r+r, c2lr-7, ¥

+(r+7,)0? vi- (i;z‘ V1)2]}.

The Lagrangian for particle 1 is, by expanding ds up to
order 1/c%:

ds
L1=mlcﬁ+mlc2
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_. (4 i) Gmlmz( 3V“1’) GPm,m3
= (i) + S (13 ) - G

Since 1/¢* appears in the two dimensionless ratios
v%/¢? and Gm,/c?r, keeping only the lowest powers of
1/¢? is an approximation valid for slow motion and suffi-
ciently large separation. A cutoff at a given level in
1/¢? implies a corresponding cutoff 6f the series in G:
"The 1/¢? term in /| is a polynomial in G containing no
higher power than G2, Later on, the expression “up to
order G or G*” will refer to the coefficient of 1/c2 in

L.

Now, we go into a frame in which the velocity of
particle 2 is v,. The kinetic energy part of / ;:m,(v3/2
+v‘,f/ 8¢?) is left unchanged by a Lorentz transformation
as it corresponds to the invariance of the proper time
dry=(1-v3)2qt,

For the remainder, it is enough to use:

(rev,)v.
Vv,V =V, »r——r+——2—c§—z,

V,eV, , V2
~ Va2 Y2
dt dt(l = + 3 cZ) s
where, after the Lorentz transformation, we made an
instantaneity correction: r,(t,) =r,(¢,) — v,(¢, — £,) to make
the two particles simultaneous in the new frame. We
obtain

A _vj_) Gm,mz[ _}_(_(r"vz)2
Ll“m1<z+8c2 B R =

3 v\l GPmym3
+§(v§—2v1°v2+v§)—v,‘°v2+-21)]-—ﬁ"lz—z.

Adding

vZ_ vi\' . d[Gmm, TovV
AL BN UL UG )
’"2(2 +802) +dt< 22 7 )
does not change the acceleration of particle 1, but yields
a Lagrangian which, up to order G, is not symmetric in
the indices of both particles, and can be used for both up
to that order:

2

vz 4 v 4
[, =m1(-21+8—"015) +m2<—22+8—vc=2->

Gm,m 1 rev,rev,\
+—lr——2[1 +§-c—2(3v';’+3v§—7v1-v2———713—3)]

_GPmym, (my,)
2c%%
This last addition is the same as the one we would make
to recover by a Lorentz transformation the Darwin—
Breit Lagrangian from the Lagrangian of a test particle
in the electromagnetic field of a heavy charged particle
at rest:

A ALY
5/[—m102<1 cz> p dt=0.

In this case, there is no term quadratic in the prqduct
of the two charges (contrasting with the gravitational
case, where the G? term was the mark of the nonlinear-
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ity). The only effect of the Lorentz transformation is the
appearance of a magnetic force; radiation is absent.

Now, by admitting that there exists a common
Lagrangian up to order 1/¢2, symmetric in the indices
of the velocities and the mass of both particles,

[ =Kkinetic energy +G—m1;‘-ma[l +-i3[A(V§ +V3) + BV, v,

- i Gm, Gm.\
o ° K
+ CPeov 7 vz]:+ D(—lzr + —lzr )]

(4, B, C, D being numerical coefficients), which we know
from the work of Einstein, Infeld, and Hoffman, and
Fock, then the only function symmetric in m, and m,
which yields m, when m,> m, is unambiguously m, +m,.
This last step certainly modifies the acceleration of
particle 1, but supplies us with a common Lagrangian
which can be used for both particles up to order G2,
when both masses are comparable, and which coincides
with the EIH Lagrangian,

Now, we have to give the reason why making a
Lorentz transformation in harmonic coordinates was
expected to lead to the correct result. A first practical
reason is that Fock worked out the EIH Lagrangian in
harmonic coordinates: Thus, if we wished to find the
same result, we had to start from the same kind of
coordinates (we will see that the harmonicity condition
is left unchanged by a Lorentz transformation). Ein-
stein, Infeld, and Hoffman defined their system of co-
ordinates at each step of approximation, but their result
is the same.

Another reason why, at least up to order 1/¢2,
Lorentz transformations were expected to play an im~
portant role is that the field equations in first approxi-
mation, and in harmonic coordinates, are

02,y = 36,,8) = = 161Gc™T,, (g,;20,,+hy,),

where 2 is the d’Alembertian in flat space. Thus the
field propagates along light cones, as in special rela-
tivity. At higher orders in ¢*2, the characteristics for
the propagation of the field will be curved, not straight,
and their form will be codetermined with the configura~
tion of the masses.

However, in spite of the loss of isotropy and uni-
formity, a theoretical reason to guess that Lorentz
transformation will still play a major role to all orders
in ¢’ in Fock’s proposition? that it is unlikely that there
exists any system of coordinates, other than the har-
monic set, determined uniquely apart from a Lorentz
transformation, because they are characterized by the -
fact that they satisfy a linear, generally covariant
equation:

1 9
T= s 57 (el 728 =it =0,

Harmonic coordinates exclude all fictitious gravitational
fields, and, in a way, they can be called the most
inertiallike coordinates. Is that enough to entail world
line invariance and functional invariance under Lorentz
transformation to all orders?
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CONCLUSION

We have recovered the EIH Lagrangian by a procedure
whose simplicity contrasts with the lengthiness of the
original computations. It raises the question of a Special
Relativity content in General Relativity, apparently
restricted to harmonic coordinates. As a test, it would
be worth computing the accelerations up to order c™ to
see if they satisfy the Currie-Hill conditions.
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A system of functional differential equations with random retardation, x(¢) = f(¢, x ), is studied,
where x () = x(t +0), 7(t,®) <6 <0, — r < 9(f,w) <0, and 7(¢, @)

is a stochastic process defined on some probability space (2, u, P). Some comparison theorems are
stated and proved in details under suitable assumptions on f(z, x ). Sufficient conditions for stability
in the mean for the trivial solution then follow. The usefulness of the sufficient conditions is

illustrated by an example with two different Lyapunov functions.

1. INTRODUCTION

In the study of some sophisticated dynamical systems,
it is always desirable to consider either stochastic dif-
ferential equations or functional differential equations.
Despite the amount of work that has been done on each of
the two types of differential equations, very little effort
seems to have been devoted to correlate them.

In Ref. 1, Lidskii investigated the problem of stability
in the mean for the solutions of a system of linear dif-
ferential equations with random delays. In that paper, he
used the Lyapunov direct method, without proving its
validity in the case of random delays, and obtained some
sufficient conditions for stability of the trivial solution
in the mean.

The concept of the Lyapunov function, together with
the theory of differential inequalities provides a very
general comparison theorem (see Ref. 2) by means of
which a number of qualitative properties of solutions of
differential equations may be studied in a unified way.

In the present paper, we consider a general class of
stochastic functional differential equations. Qur main
purpose is to establish the stochastic version of the
comparison theorem for the functional differential equa--
tion in Ref. 2. As in the deterministic case, sufficient
conditions for stability (in the mean) follow easily from
the comparison theorem.

2. NOTATIONS AND DEFINITIONS

Let {n(t, +), te R'} be a stochastic process defined on
a probability space (2, u, P) and takes values in [- 7, 0],
where R*=[0, »). Let ( =C([-7,0],R") and, for ¢c(,
we define II¢IIO=_rS;IiOII¢(9)II, where (|- [| is an Euclidean
norm.

Consider the system of stochastic functional differen-
tial equation

HH)=f(t, x,)

with initial conditions

(2.1)

x30=¢0€C’ Tl(to)="7m
where
x,=x(t+8), n(f)<s<0, -rs<n(t)<0, and f,ecR".

From now on, we shall assume f(¢,0)=0. To ensure
that (2. 1) has a solution x(¢,, ¢,, n,)(¢) on [#,, ) with ini-
tial data (¢,, ¢,,m,), we shall assume that f(¢, x,) is suf-
ficiently smooth and n(t, - ) takes on countably many val-
ues, say R, in [-7,0].

Also, consider the scalar differential equation
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u(t)=g(t,u), ul(ty)=u,=>0, (2.2)

where ge C(R*XR*,R*), g(t,0)=0 and g(¢, ») is concave
in « for fixed ¢{. A solution of (2. 2) will be denoted by
u(t, t,, u,) defined on [t,, ).

Let us define some definitions of stability in mean of
the trivial solution x =0 of (2. 1) as following:

Definition 2. 1: The trivial solution x=0 of (2.1) is
said to be:

(i) equistable in mean, if for each €>0,, £,[0, ), there
exists a positive function 6 = 6(Z,, €) that is continuous in
¢, for each ¢>0 such that the inequality ||¢,ll, <6 implies
M Ix(to, P> NN B, 1p] < € for ¢ = £,

(ii) uniformly stable in mean, if the 5 in (i) is inde-
pendent of {,.

(iii) quasi-equi asymptotically stable in mean, if for
each €>0, £ c [0, «), there exist 5,=05,(f,)>0and T
=T(£y, €) >0 such that for ¢ >¢,+ T and ll¢,ll,< 5 implies
M1ix(t, or M) 1 oy m0) < €.

(iv) quasiuniformly asymptotically stable in mean, if
8, and T in (iii) are independent of f,.

(v) equiasymptotically stable in mean if (i) and (iii),
hold simultaneously; uniformly asymptotically stable in
mean if (ii) and (iv) hold together.

Corresponding to Definition 2.1 (i), we can define the
definition of stability of the trivial solution #=0 of (2. 2)
as the following:

Definition 2. 2: The trivial solution u=0 of (2. 2) is
said to be equi-stable, if for each €>0, i e [0, ©), there
exists a positive function 5 =5(,, €) that is continuous in
t, for each ¢>0 such that

u(t, ty,u,) <€ t=t, whenever u, <5.
The following two definitions will be useful.

Definition 2. 3: A function a(7) is said to belong to the
class K if ac C(R",R*), a(0)=0, and a(7) is strictly
monotone increasing in 7.

Definition 2. 4: A function b(t, ») is said to belong to
the class 4, if be C(R*XR*,R*), b(t, - e K for each
teR*.

3. COMPARISON THEOREMS

Let the Lyapunov function, V(¢,y,n(t)), be defined as
Ve C([- 7, ®)XR"XR, R*). Define

DMV (¢, (0), n(t);$)]
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=T i M V(e + h, §(0) + BF (1, @), m(t + 1) | n(t)]

where ¢ (, M[A|B]is a conditional mathematical ex-
pectation.

Ar={peC|_sup MIV(t+s, o(s),n(t+ ) |n,]
=MV (¢, $(0), n(t)) [n, 1},

t>t,,

(3.2)
and
A:={oeC|_sup MIV(t+s, ¢(s),n(t+ s)|molA(t+s)
=M[V(t, $(0), (1)) [n,JA(0)}, (3.3)
where A(f)> 0 is continuous on [~ 7, «).

After introducing all those notation and definitions
listed above, we shall state and prove in detail the
stochastic version of the main comparison theorem (see
Ref. 2, p. 83) as the following:

Theorem 3.1: Let Vé C([-7, ©)XR"XR, R*) and
V(t, ¢(0), n(2)) be locally Lipschitzian in ¢(0) uniformly
in n(#). Assume D*M[V(¢, $(0),n(?); #)] defined as in (3. 1),
satisfies
D*M[V(t, $(0),1(t); $)] <g(t, V(t, $(0),n(2))) for t>1,,
(3.4)

where ¢c A,; §< C(R*XR*,R*) and g(¢, u) is concave in
u for fixed ¢.

Let #(¢)=7(t, t,, u,) be the maximal solution of the
scalar differential equation

f=g(t,u), u(ty))=u,>0,
and 7(t) exists to the right of ¢,.

(3.5)

If {x(ty, do» Mo)(t, w)} is the realization of solutions of
(2. 1) defined on [¢t,, =), satisfying
_8up VLo, dols), mo) St (3.6)

and M[V{¢, x(t;, do, M6)(2), 1(E))] ¢, o] is differentiable in
t, then

M[V(t, x(tm ¢o’ no)(t)’ n(t)) ] ¢o$ no] S’V(t, to; uo)a t=> to- (3- 7)

Proof: Let x(¢,, d,, 1,)(1) be any solution of (2. 1) with
initial conditions (f,, ¢, 1,)-

Define
m(ty= MIV(t, %(L5, Do NNE), H(EV) | Doy Mo )

For €> 0 sufficiently small consider the scalar dif-
ferential equation

w(t)=g(t, u)+e,

whose solutions (2, €} =u(t, €, ¢,, u,) exists as far as
1, 1y, u,) exists to the right of #,. Since

u(t) =uy>0 (3. 8)

lixgl u(t, €)=r(l, ty,u,) for all t=1¢,.

Hence to show that the theorem is true, it is sufficient
to show that

m(t)<u(t,e), t=t,. (3.9)
Suppose (3.9) were not true (for contradiction). Let
t=inf{t |m(t) 2 u(t, €), t>1t).

Then the continuity of functions m(¢) and u(¢, €) implies
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the following:
(3.10a)
(3. 10b)

m(t) <u(t,€), 1t,Stst,

m(t)=u(t, €), I=t,.
From (3. 10 a, b) and the differentiability of m(f), we
have

Dm(t)=D*m(t)=D _m(t,)=lim h[m(¢,) - m(¢, +h)]
k-0~

=1im k™ [u(ty, €) - m(t, + )]
o~

> 1;.1.155 1Y ult,, €©) —u(t, + h, €)]

=lim H u(t,, €) — u(t, + h, €)]

=u(t,, €)= g(t,, u(t,, €)) +e¢

>0. (3.11)

Also, from (3. 10a) and (3. 11), we have
m(t,+s)<u(t,+s,€¢) for -r<s<0;

hence

m(t,) <_sup m(t +s)< sup . u(t, + s, €),

-r€g=<
=u(ty, =mlt,),
or consequently,

sup M[V(t1 +s, x(toy bos no)(t1 +s), n(t1 +5)) | o, %]

-y €550

:M[V(tly x(toy ¢o, no)(t1): Tl(tﬂ)' (i)o: no];
which also implies
%(tos bos M)ty +S)EA,, by the definition of 4,;

D'm(t))= EI;I: B m(t, + k) —m(t,)]
0

=1im KLV, + b, L, $o MLy + B, ity + 1) G,1o)
= M[V(ty, b0, M)t (1)) | B0, 7011

=Tim 7 ALVt + b, 2o, G0 TNty + R, 108 + 1)) 66, )

= M{V{t,+ h, 5{to, bo, M)ty) + Bfity, %, ), 1ty + B))| o, 7]

+ MVt + by (b, doy NaX(E) + hflty, 2, ), 0ty + ) o, 7o)

= M[V(ty, %(to, bor o)1)y (1)) | b6, o]}

< 1}51 RV + by X(to, B0 Moty +R), 1ty + B[ o . ]

=MVt + b, 5(t, G0 o) (Er) + Bfit, %, ), ity + 1)) 6o, o}

+ i KMV + by gy G0, Moty + B, 7,),

Nty + 1)) | oy M)
= M[V(ty, x(to, do» MoNEy), 1)) | Do Mol (3.12)

But, since V(t, ¢(0), n(¢)) is locally Lipschitzian uniform-
ly in ¢(0), the first term in the above expression be-
comes

Hm 1 MIV(t, + b, 26, S o)l +B), (2, + 1)
= VAt + by 2ty b Mo)(ta) + 1ALy, %, ), 1ty + 1)) | o, Mo}

=Hm 1ML + R)IGt + B) = (1)) = £ (1, % I | d,m ]}
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= ii_n.}M[L(tl + k)"hnl("(ﬂ +h) - x(t1» - ALy, xel)” l Doy "70]
a0

<0.
Hence (3. 12) becomes
m(ty) ST MMV, + Ry 5ty b0y o) + BfE, %),

7ty + 1)) = V{ty, £(to, dos o)(t), e | #(2,), n(2)]] oy o}
< M{lim KMV + Ry 2t G0 Mot + AR, %, )t + B))
= Vty, 2(to, Do, Mo)(ty), (1)) |%(11), 1t s 7o)
=M[D"MIV(ty,5(t5, b0, M)t (t2);%, )| bor M)

<Mlg(t,, V£, %ty oo )LL), (EN) | Do, 1)
or
D'm(t,) <M[glty, Vlto, dos o)ty n(ty) )| dos Mo )- (3.13)

Since g(t, «) is concave in u, we apply Jensen’s inequa-
lity (see Ref. 3, p. 33), to (3. 13); we have

D*m(tl) sg‘(tu M[V(tp x(toy oy no)(tj,)n, “ﬂ(f;))l b0 no])

=glt,, m(t))=glt,, u(t,, €)), (3.14)
which contradicts (3.11), that
D'm(t,) = g(t,, ul(t,, €))+ € for >0,
Thus, m(t)<u(t,€), t= 1, or equivalently
MUV, (g, DornoXB)s NN by M) SH(E, B, 145),
t=0. QED

The following by-product of Theorem 3.1 will be very
useful,

Theorem 3.2: Assume that the hypotheses of Theorem
3.1 hold except that the inequality (3.4) is replaced by

ADOD*MIV(E, (0, n(t); 9)]+ ML V{2, $(0), n(t)| ¢y, n,ID*A(2)
<g(t, V(t, o(0), (NA(L)) for t=t,, e (3.15)
where A(f) >0 is continuous on [- 7, =),

Then;. SUP_, ¢, < Yl PolS), ML NA(E,) Su, implies the
estimate

MIA)V(E, K(toy Dor No)(E)s D) | dos o] S (L, Loy o), 2 £
(3.16)
Proof: We set
K(t, p(0), n(1)) =A()V(t, $(0), n(2))-
Let ¢c 4,. For small £>0, we have
K(t+h, $(0) + hf(t, $), n(t+ h)) = K(, $(0), n(t))
=V{t+h, $(0)+hf(L, ), n(t+ k) [A(t+R)-A(D)]
+A@V(t+ h, $(0) + Rf(L, ¢), (t+ h)) = V{2, $(0), n(1))].
(3.17)
From (3. 17) and assumption (3. 15), it follows that
D'MIK(t, $(0), n(1); )] | |
=1im sup k" MK(t + &, $(0) + hf(t, $),m(t+m)|n(2), $(0)].
- K(t, (0), n(¢))}
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xA(t) D’M[V(ts ¢(0);n(t);¢)]
+M[V(t, $(0),7(1)) ]| doy Mo ID*A(2)
<g(t,K(t, $(0),n(t)) for t>1, dec A, (3.18)

where

A=leeC| sup MIK(t+s, ¢(s),n(t+ ) |n6, ¢o)
=M[K(t, $(0), n(£)) |n5, dol}-

It is clear that K(¢, ¢{0), n(#)) is uniformly locally
Lipschitzian in ¢(0), and, thus all the assumptions of
Theorem 3.1 are satisfied, with K(#, ¢(0), 5(#)) in place.
of V{t, ¢(0),n(t)). The conclusion is now immediate from
Theorem 3.1 QED

4. SUFFICIENT CONDITIONS FOR STABILITY

The following theorem provides sufficient conditions
of equistable in mean for the trivial solution x =0 of the
stochastic functional differential equation (2. 1).

Theorem 4.1: Let there exist functions V(¢, $(0), n{¢))
and g{(t, u) having the following properties:

(a) g C(R*XR', R*), g(t,u) is concave in u for fixed
t and g(¢,0)=0.

() VeC([- 7, ®)XR"XR, R"), V(t, $(0),n(t)) is locally
Lipschitzian uniformly in ¢(0) and M[V(¢, x(Z,, ¢, n)8),
7)) | o, M) is differentiable in ¢, where x(¢,, d,,n,) (t) is
a solution of (2.1).

(c) D*M[V(t, p(0), n(t); d)] <glt, V{t, ¢(0), n(2))), for
t> i, deA.

(d) There exist functions b(¢, 7), and a(r) where b¢ 4,
ac K, and a is convex such that

a(llp(0) ) < V¢, $(0), n) <b(¢, loll)
for ¢ and (¢, ¢(0),n) e [~ 7, ©)XR"XR.

Then, the trivial solution x=0 of (2. 1) is equistable in
mean if the trivial solution #=0 of (2. 2) is equistable.

Proof : Let x(t,, ¢4, 1,)(2) be any solution of (2. 1).
Choose

sy =b(to, ll¢yll,)
so that
sup V(tor ¢Q(S), 730) Suy.

-y €3 %0

An applicationof Theorem 3.1 yields

M{V(t5 x(t, Do no){t)a n(t»l by, "70] <, Zos uo}s £ =1,

where 7(1, t,, #,) is the maximal solution of (2. 2). Also,
because of assumption (d), we have

a(llx(ty, dos M) S VAL, (2o, b0y Mo)E), M) fOr ac K. (4.1)
Since a is strictly monotone increasing and ¢ is convex,
it follows, from (4. 1), immediately that
aM[l1x(to, Gor NN | B65 7101
S MIV(Z, x(tg, G0 o)) 1)) | s o)

Now, let ¢>0 and {,c R* be given. Assume that the
trivial solution =0 of (2."2) is equi-stable. Then for
these given a(e) >0 and f,c R*, there exists a §=5(t,, €)
>0 satisfying . - :

(4.2)
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u(t, by, ug) <b(€) for t=1, provided u,<5. (4.3)

Moreover, because of the continuity of b(t, ») by (d),
there exists a 5, =05,{{;, €) >0 such that

llpoll, <8, implies b(t,, llgolly) < 6. (4.4)
Combination of the facts (4.2), (4.3), and (4. 4) implies
a(M(llx(to, bos YO, Mo 1)

<MLV(t, 2(to, G0 o)1), 0(1)) | bg, 7o)

< 7(t, by, u,) < afe) for t=t,, (4.5)
whenever

llpoll, <5,
which, by the monotonicity of ¢, also implies
M{llx(to, b M)l [ S Mol <€, £ 15,
whenever

Hopll, <6, QED

As an extension of previous theorem, we shall have
the following corollary which is pertaining to the suf-
ficient conditions of uniformly stable in mean for the
trivial solution x=0 of (2. 1).

Corollary 4.1: Assume that all the hypothesis of
Theorem 4.1 hold. Furthermore, assume that b(¢, )
=5(r). Then the trivial solution x =0 of (2. 1) is uniform-
ly stable in mean, if the trivial solution #=0 of (2. 2) is
uniformly stable.

Proof: Following the proof of Theorem 4.1, we obtain
(4. 4). Note that 5, in (4. 4) is independent of f,. Thus
x=0 is uniformly stable in mean. QED

An application of one of the comparison theorems
(Theorem 3. 2) yield the following useful result of the
sufficient conditions of equiasymptotically stable in
mean.

Theorem 4.2: Assume that there exist functions
V{t, $(0),n{t)), £(t,u) and A({) satisfying the following
conditions:

(a) A(¢) >0 is continuous on [- 7, ©), and A(f) - = as
f— 00,

(b) Ve C([- 7, )X R"XR, R*), V(t, $(0),n(t)) is uni-
formly locally Lipschitzian in ¢(0), and
M[V(t’ x(to) ¢o) no)(t)s 'ﬂ(t))l ¢0, T’O] is differentiable in t,
where x(i,, ¢,,1,)(¢) is a solution of (2. 1).

(c) g= C(R*XR", R*), g(t,0)=0, and g(¢,u) is concave
in #, also

AND*M[V(t, $(0), n(1); 0} + V (¢, $(0), n()ID*A(2)
<glt, V(¢, ¢(0), n(tNA)),
for t>1,and ¢¢ ,,4;, where

A?'m {¢€C l_rs‘ggo M[V(t+s, ¢(s), n(t + sNA(E+s) }770’ ‘po]
=M[V(z, 9(0), n(MNA(E) |15, o}

(d) There exists functions a(r) e X and b(f,7)c A
where a is convex, such that

a(llp(0)1) < V(z, $(0), ) <b(t, lilly)
for ¢ C and (¢ ¢(0),1) € [- 7, ®) XR"XR.
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Then, the trivial solution x =0 of (2. 1) is equistable
in mean and quasi-equiasymptotically stable in mean
(hence equiasymptotically stable in mean) if the trivial
solution u=0 of (2. 2) is equistable.

Proof: If x(t,, ¢, Mo)(¢) is any solution of (2.1) such
that

A( to)a( to’ ” ¢)o”o) = uos
we have, by Theorem 3.2,
MIAV(L, X(tg, D> 1)), NN | b0 Mol S 7Ly B, 0), £2
Let >0 and {,c [0, ©) be given. Let
a= min A(f).
-y % o0

By assumption on A(#), it is clear that a>0.

Set C = aa(€). Then proceeding as in the proof of
Theorem 4.1 with this C instead of a(€), it is easy to
prove that the trivial solution of (2.1) is equistable in
mean.,

To prove quasi-equiasymptotically stable in mean,
given p>0, let C*=aa(p). Let 5,(f,, p) be such that

ol <3,
implies

MTlIx(Loy $os NI | D m0] <,
for t=1¢,.

This is possible by equistability in mean. Designate
84(t,)=8,(fy, p), and suppose that li¢ll, < 8,.

Since A(f) — » as t —~ «, there exists a positive number
T =T(t,, €) such that

A(t)a(e)>C*, t=t,+T.

We then have, by Theorem 3.2, (4.2), the fact that
u(t, by, ug) < C* if u, < 8(t,, p) and A(£)>0,

A aM{lIx(Lg, G0, NI | D0, 1))

<SANMIV(E, x(to, o, 1o)8), 1)) | Bos 7]

< (¢, by, Ug)

< C*<A(tale),

tzt,+T. (4. 6)

Then it follows, from the foregoing enequality, that
M[“x(to) ¢o» ﬂo)(t))u‘po; 7?0] < 67 = to + T
provided

llolly < 8-
5. EXAMPLES

In this very last section of this paper, we shall con-
sider a scalar linear functional differential equation with
retardation 7(¢, w) and demonstrate the applicability of
Theorem 4.1 by using two different Lyapunov functions.

{A) Consider the stochastic functional differential
equation
=) [, *(s)ds, (5.1)
where A(£)>0, 0 <n(¢) <7, and M#n(2) <&(H)eL,[0, ).
Let

Arv={pe C|_sup Vit+s, o(s),n(t+s))

QED

$



‘1478 Chang, Ladde, and Liu: Stability of stochastic functional differential equations

= V(¢, $(0), ()} (5.2)
Now éhoose a Lyapunov function

V(t,x,n)=|x]|. (5.3)
Therefore

V(t, x,1) = % EOIRIEGH

<M1 f:-n(ﬂ |x(s)|ds,

a(tm(t) _rs‘tigo[x(s)(. (5.4)

Hence, from (5.2), we have
V(t, x,m) SMetm( VL, x,m)

<k()V(t, x,m) for x,eA4,. (5. 5)

Now choose
a(t, u)=Fk(t)u.

Therefore, the trivial solution #=0 of the scalar dif-
ferential equation

W(t) = glt, u(t)) =k(t)u, (5.6)

is uniformly stable, which in turn (by Theorem 4.1 and
Corollary 4. 1) implies the trivial solution x=0 of (5. 1)
is uniformly stable in mean.

u,=0

(B) Again, consider the same stochastic functional
differential equation as (5. 1)

2=\ [ Hs)ds, (5.7)

where A(f) >0, 0 <n(f) <~ and we have further assump-
tion on n(¢) and A(¢) such as

MEm(8) + [Dn(8)/n(8) + 1] <h(t)e L,[0, =), (5.8)
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where Dn(f) =lim M[E™Yn(t + k) =n() |n(&) =n].

Notice that Dn(¢) as defined above is a function of ¢
and 7. i.e., Dn(f)=£(¢,n). Now, choose a Lyapunov
function V({,x,7n) as

Vit x,m) = |x|[n(t) +1].

Then

D*M[V(t, x(t),n(1)]
= a‘—:— [2(2)1 [n(£) + 1]+ | x| Dn(¢)
< |#(0)| In(t) + 1]+ | x| Dn(2)
SMEMOVE, %,0) + {Dn(@)/ () + 11 V(L %,7)
=((Em(t) +{Dn(2)/ [n(t) + 11D V2, x,m)
<h(BV(L, x,7).

Choose g(t, u)=h{t)u.

(5.9)

(5. 10)

The same conclusion we have, as in (A) that the trivial
solution #=0 of

w(t)=gl(t, u)sh(t)u, u, =0

is uniformly stable.

(5.11)

Hence, the trivial solution x=0 of (5.7) is uniformly
stable in mean.

IE,A. Lidskii, Differ. Uravn. 1, 1 (1965),

%y, Lakshmikantham and 8. Leela, Diffevential and Integral
Inequalities (Academic, New York, 1969), Vol, II.

3J. L. Doob, Stochastic Process (Wiley, New York, 1953),
3. Hale, Functional Differential Equations (Springer-Verlag,
Berlin, 1971).
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The use of cumulant techniques for analyzing time dependent, stochastic matrix expressions of the
form <Texp[fiB(S)d S]> is explained. Because cumulants are complicated expressions when B(t)
does not commute with itself at unequal times, we explicitly work out cumulant expressions up to
fourth order. The fourth order terms can be used to demonstrate that noncommutivity prevents the
generalization, to time-dependent, stochastic matrices which do not commute with themselves at
unequal times, of the result which applies to commuting stochastic processes that states: If the

stochastic process is Gaussian, then its cumulant expansion truncates after the second cumulant.
Furthermore, it is argued that if the stochastic matrix process is both Gaussian and purely random
then the cumulant expansion does truncate after the second cumulant, after all. The significance of
this result with respect to the application of approximation involving cumulants is mentioned.

INTRODUCTION

It is the purpose of this paper to apply cumulant tech-
niques to the analysis of multiplicative stochastic pro-
cesses.! When the stochastic matrices, which appear in
the differential equations defining a particular multipli-
cative stochastic process, have special properties, the
use of cumulants can lead to significant simplifications
in the analysis of solutions to the differential equations.
In general, when no special conditions are imposed on
the properties of the stochastic matrices, cumulant ex-
pressions contain all of the information of the original
problem, but without any particular advantages for
further analysis. Kubo?® has introduced cumulant tech-
niques for the study of multiplicative stochastic process-
es, and he has attempted to approach the problem in as
general a setting as possible. Fox! has studied multipli-
cative stochastic processes without using cumulant
techniques, and has restricted his approach to the prob-
lem to the use of stochastic matrices which are purely
random and Gaussian. It will be demonstrated in this
paper that the restriction to purely random, Gaussian,
stochastic matrices corresponds with the special condi-
tions alluded to earlier for which cumulant techniques
are most useful.

In the course of this paper we will show how the
utility of cumulant techniques is related to the Gaussian
property of the stochastic matrices. When the stochastic |
matrices are time independent, the Gaussian property
alone guarantees major simplifications in analysis if
cumulants are used. When the stochastic matrices are
time dependent and do not commute for unequal times,
then the Gaussian property alone is insufficient, and
must be augmented by the purely random property if
efficacy is to be achieved using cumulant methods. It is
this last point that requires emphasis when one is using
approximation methods which rely upon cumulants
expansions.

TIME ORDERING AND CUMULANTS

Consider a multiplicative stochastic process de-
scribed by!

d ~

dt (t) Aaa'aa ( )+Aual(t)aa:(t) (1)
in Which Ayyr==Agrq, Agar()=—Ayig(t), Age(t) is a
1479 Journal of Mathematical Physics, Vol. 15, No. 9, September 1974

stochastic matrix with averaged value zero, «
=1,2,...,N, and repeated indices are summed. If
A,,:(?) had a nonzero averaged value, we could include
its averaged value in the term A,,. and start over again
with A,q.(f) ~ (A44+(8)) as the stochastic matrix, where
(++-) denotes stochastic averaging. We would then have
a process such as described by (1) with the average val-
ue of A,,.(f) equal to zero. A useful manner for obtain-
ing the solution to (1) is to use the transformation

ay(t) = [exp(tA) Jyq +b ().
Consequently, the b,’s satisfy

(2)

%ba(t) — [exp(— tA) Jupsp () exp(tA) Jpra s (8)
= Eau'(t)bu '(t)

where the second equality defines B(#). Note that the
averaged value of B(#) is zero since it is linear in the
matrix elements of A(#). In general, A and A($) will not
commute, neither will A(¢) and A(s) nor B(#) and B(s)
for t#s.

(3)

The formal solution to (3) must be written with a time
ordered exponential® defined by

ba(t)=[Iexp(j;'ﬁ(s)ds)]“,ba,(o)
an‘% fo‘ fo“ fotz fot,.-e foe..-l [§au1(tl)§um(tz).

By, inalta) By ar(t))dtndt, - - - dtydtibg.(0)

(4)
where the #=0 term is defined to be 1. If B(#) and B(s)
commuted for ¢+ s, then (4) would reduce to an ordinary
exponential

,,@on‘ f [Bau1 Sl)

S,)1dS,* - - dSb40).

“n-l“ (

If B(t) is in fact time independent, then all time integra-

tions are easily performed giving the ordinary
exponential

L 1 ~ n
2 T 1(B) haarba(0).

Cumulants arise when one wishes to perform the
stochastic average of an expression like (4) or its more
simple forms given above, at the end of the preceeding
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paragraph. Historically speaking, cumulants arose in
statistics and were known as Thiele semi-invariants.*

Suppose that we have a time independent stochastic
variable X and we are interested in calculating {exp(X)),
where X may be either a scalar or a matrix stochastic
quantity determined by the distribution function for
its values. The cumulants for X are defined by

(expl) = (% S )= 5 20 (B
- exp@ L&) (5)

where (- - +), denotes the cumulant average. Cumulant
averaging is by definition a homogeneous process with
respect to multiplication of X by a constant, just as is
the case with ordinary averaging. Therefore, (()\)?)")c
— X"( ">c: a.nd

(exp(\X)) = exp (nf)l ni: ((2?)")c) . (6)

Differentiating (6) » times with respect to A, followed by
setting A=0, gives forn=1,2,3,4, --

& = (X),,

(XD =(X)>, +(X?

(B3 = (B, + KB, XD, + B, ()
‘«X)*> «xm + 4(DH, (B, + H(X)D2+ 6D D (B2 + (KN

Starting with the first line, these equations may be suc-
cessively inverted to give expressions for cumulant
averages in terms of ordinary stochastic averages:

&)= &),

(), =(BH - XY,

J Bast) dt= [* 2838 dt= [F (Baglt) aty,

1480

(&), = (3% - HBHE) + 282,
(BH, = (XY = (D) - 3(DD2 + 12X H(H)? - 6(%)*

It is possible to define cumulants even when we are
dealing with time-dependent stochastic matrices which
do not commute at unequal times.? One gets time-
ordered cumulants defined by

<Zexp(f:§(3)d3)>szexp(§ B St finee [
x(B(t) Bt - - - Bt B(E),
Xdt, dt, -+ -dbydby). (9)

Because it is so easy to misinterpret the precise mean-
ing of (9), we introduce here the following notational
scheme which permits unambiguous rendering of (9).
Define g%(#,) by
11 t th.. t ~ ~
gg:s)(tl) = j“, ! jt; 2... fo n- j[; i <Bau1(t1)3u1ua(t2) .
B (ta) B, _s(E)e Aty Gty « - - Aty ity (10)

Hn-2tn-1
Therefore,

<g exp(fo* B(s) ds)>= T exp<"z.:>1 fo‘ g™ (t) dt1> . (11)

As before, we can introduce a parameter A, and using
(10) leads to

<Z_‘exp<fot>\§(s)ds)> Texp( S ""(tl)dt) (12)

Differentiating (12) with respect to A, n times, followed
by setting A=0, gives forn=1,2,3,4, ---

ST Ba (t) Bt dtydty = [P @) aty+ [ [ gidt)gR(ty) dtydty
= [ [ Bau ) Buglte dtzdty + [F [ (By (1) o(BatD), dtz aty,
S5 3 Ba (8B, (8B, lts)) dts dty dty
= [t at+ [ [ e@etogBe)+ [ )" sS2tei2 (k) dtpdty
+ [ [T (gt (gL (1) desdt dty
= [ S B (1) B (8 B, s (b)) disdtdty + SR S B (8B, 1 (S)e( B, plt) o dt2 dS dty
+J;' foq fotz(Baul(h))c(Bu,uz(tz)Buzs(ts»cdtsdtzdtt+ft f“f'z<B¢u1(t1)>c<Bu‘ua(tz»c(BuzB(tS»cdtadtzdtl;
RS L2 S Baw () By (8B, u (8:) B, (1)) dty ity dty
= [fet) an+ [f [ eRAt)elRt) drpat + [ [ e8Nt)g () dtadty
+ fo felg;zﬁ (t)g3 () dtzdh"‘f ftlftzgffu)1 V&N (2 Eis(ts) dts dty dty
+ f fil ftzgél;zl(h)gﬁ)uz(tz)g;(nla)s(ts) dtydtydty + f; j;‘l ftag&h"(tl)gyl’uz(tz)g(z’(ts) dtydtydty
+ f AR ts g0 (1088, (t)g ) (88 u(ty) dty dts dty dty
= [ LR L B () B (8Bl (8B, (80, dty dty dty dty
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RSS2 [ B, (0B, 1, (DB, 0 (Se(B, (t)), dty dSs dS, dty
ST LT L5 B (4B, (£ By (8 B, p(80)), dty ity dty ity
B L 8 B (0B, (S (B  (B, 1o(S9)), dSy dt dS, dty
SR LA [ 2B (8B 0 fSDelB, o (B oty Aty dtz Sy dity
LR LR L B (0)B, (1B, (59 Bagalto)b, by dSy dty dty
+ L St (B uy (VKB s (8B (89 B, o(E0)) Ay ity ity dty

+ o+ o+ o+
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+ LR S B (VB L (0B (80) oS B (1)) ity ity it ity (13)

Especially notice the limits of integration in several of the terms which contribute to the third and fourth order
expressions. By successively inverting these equations we get expressions for the cumulants in terms of the ordi-

nary stochastic averages:
fot (ga B(t l)c dty= fot <§a B(ti» dty,

fot foh <§uu(t1)§uB(tz)>c dtydty = fot fotl <§au(tl)§u olt2)) dtydty — fot fotl (B, ,(t)XB,4(8,) dt, aty,

t [ty fta,n = ~
fo fo 1[0 2(Buu1(t1)Bu1u2(tz)Buae(ts)>c dtg dt, dt,

= L 2 Ba (80)B, (9Bl plt) dtydtadty = [ [ [ (B (0B 0 (SN B pl8) S,
= Jo R S B B (0N B (8D Bt dtgdtyaty + [ [ [ B, (tOXB, . (8B, olts)) dtydt, dty,

t2 (ta/R ~ = ~
fot fotl Jo 2 f#(Bau (1) B, kb2 By (83) By, 6(te)), dly ity diydty

= SR Baw B (1) Bl (8B, o8 dtydts dtydty
_fE L e o't By (8B, (SIB,, u (SINB, t2)) diy dS; dS, dty
+ L (Buy (0B, , (SINB, . (SP)(B, (1)) dt, dS3 S, diy
+ fo' j;)tl f S I t (E,,“l(tl)xguluZ(Sz)Buzus(Sa))(ﬁaaa(tz»dtadS3dSZdt1
= L L S B (80XB, u (SIXB, u (SINB, t)) dt, dSy dS, dty
- fot I [ S B (1) (B, (8D B, (8) B, (0 dty dty dtydty
= B R B (DB, (SINB (8B, 4(S))) dS; dt S, dty
LS ) H B (OXBy L (SIXB, , () B, 4(S))) dSs dt,dS, dty. (14)

Again, especially notice the limits of integration in
several of the terms which contribute to the third and
fourth order expressions. By studying the special cases
in which either B(f) commutes for unequal times, or B
is time independent, it may be shown that (14) reduces
to (8), and (13) reduces to (7). It should by now be clear
how to obtain the higher order cumulants for B(¢) when
it does not commute with itself for unequal times, even
though the expressions become quite complicated.

THE GAUSSIAN PROPERTY

Throughout this discussion of the Gaussian property,
it is convenient to invoke the condition that the averaged
value of B(#) is zero. This simplifies considerations
without loss of generality, as was explained at the be-
gmnmg of the last section. The analogous condition for
X is that (O =0.

Suppose that X is Gaussian with averaged value zero.
Then it is known that the moments of X satisfy®

(()?)2"”1)=0 for m=0,1,2,---, (15)

(X)2m = 1X3x5X+« -X(2m - D{(D)D™ for m=1,2, -
If we return to (8) we see that

Q?)c =0, <(}"(')2>c= ((}?)z>’
(16)
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(X%, =0, (BY,=0.

The last result follows from the cancellation of the two
nonvanishing terms: ((X)*) and - 3((%)??, as may be
seen using the second equation in (15). It may be proved
generally that all cumulants of order higher than four
also vanish. The proof may be performed by the method
of induction. We assume it is true that except for the
nonvanishing, second order cumulant, all cumulants up
to and including order 2m for m > 2 vanish. We shall
now show that cumulants of order 2m +1 and 2m + 2 also
vanish.

The cumulant of order 2m + 1 will be expressible as
an expansion in terms of the moments of X up to order
2m +1 as is indicated by (8). The leading term will be
{(X)®>™1y which is zero according to (15). All other terms
in the expansion will involve products of lower order
moments in which at least one factor is an odd order,
lower than 2m +1 order moment. By (15), such moments
vanish and we conclude that {((X)?™*!) =0

The consideration of the cumulant of order 2m + 2 is
best pursued using the relationships given by (7). These
relationships show that {(X)>™?) may be expressed in
terms of cumulants of order less than or equal to 2m
+ 2. The Gaussian properties given by (15) show that
{(X)>™? is nonvanishing. Its expansion, according to
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(7, in terms of cumulants begins with <();)zm+z>c, which
we wish to compute, and involves other terms, each of
which is a product of lower order cumulants. By
hypothesis, all lower order cumulant, except the second
order and 2m + 1 order cumulants, vanish, and we have
already seen that the cumulant of order 2m +1 also
vanishes. Therefore, all products vanish except the
single term which is the product of m + 1 second order
cumulants. Therefore, it follows that ((X)2™2) = (X)¥™*2),
+ C{X)®™! where C is a coefficient which has to be de-
termined. Looking at (6), it may be seen that the
{X)3™! term comes from the m + 1 term in the expan-
sion of the exponential on the right-hand side of (6).
Such a term has a factor of 1/(m +1)! associated with
it. Each factor of {(X)%, has associated with it a factor
1/2! as is directly evident in (6). Therefore, {(X)%m*!
will have a factor, overall, of [1/(m +1)!)(1/21)™,
This must be multiplied by (2m + 2)! to get C as a re-
sult of the 2m + 2 fold differentiation of A>™2, Conse-
quently, C=(2m+2)!/(m +1)12™*, Using (15), it is
seen that ((X)2™%) = 1x3X5x - - -x(2m + 1){(X)H™"1,
Therefore,

<(X~)2m+2>c: 1X3X5X-- .x(zm + 1)(()?)2)17”—1

{(2m +2)! S oume
=T+ D1z (0

=0 (17
since {(X)3=((¥)?,. This completes the proof.

The conclusion is that if X is Gaussian, with aver-
aged value zero, then

(exp[X]) = exp[3((D)] (18)

which is especially simple. The cumulant expansion re-
duces to a single term!

Before attempting to generalize this result for con-
sideration of stochastic matrices which do not commute
for unequal times, it is worthwhile to observe that if
Xis replaced by a scalar, time dependent stochastic
quantity, F(¢), then the Gaussian property again leads to
great simplifications. We make this digression in order
to point out that time dependence, per se, does not
lead to complications. The complications which will
arise in our discussion of stochastic matrices, which
depend upon time but which do not commute for unequal
times, come from the noncommutivity.

Suppose F(¢) has averaged value zero, and is Gauss-
ian. It can then be shown that®

(expl [’ F(5) dSD = explt [’ [’ (F(S) F(S) dS, dS,).
(19)

Equation (19) ° ‘he time dependent generalization of (18)
for a time-dependent, scalar, stochastic process.
Again, the cumulant expansion reduces to a single term.

The generalization of this result to time-dependent
stochastic matrices which do not commute at unequal
times cannot be made. The Gaussian property for B(¢)
is expressed by’

(Eu 1v1(tl) e 'Eugm,lvzm,l(thl»z 0 for m=0,1,2,"",
(20)
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<Bu1v1(t1) .t 'Buzmuam(th» = F]W
m ~
o (__?;2". L (Bupiasarpias 1tpcas-n) Brpcapaianitoian))
form=12,---,
where Zpesm is the sum over all permutations p in the
symmetric group of order (2m)!, S,,. Even though we
can think of a Gaussian B(f) in the sense of (20), the
Gaussian property alone will prove insufficient for the
reduction of (9) to a form analogous with (18) or (19). It
is necessary that B(f) be Gaussian and purely random
in order to write

(T expl ' B(S)as) = Texpl ' [ Bt B(t,) atyat,].
(21)
The purely random property is defined by*

(Bap B, (S)) = 2Qupu it = S) (22)
in which the time delta function characterizes the purely
random property. Defining R,z by R,z = Q4493 wWherein
summation over 6 is implicit, Eq. (21) becomes

(T expl [, BS) dSD o= [exp(Rt) s (23)

which is especially simple. We shall now proceed to
demonstrate why Gaussianness alone is insufficient for
the justification of (23) or (21).

That Gaussianness alone does not result in the vanish-
ing of all but the second order cumulants of B(#) may be
seen by studying (13) and (14). First of all, because
(B(#)) =0 is assumed, the expressions in (13) and (14)
simplify greatly. We get immediately

S Boglt)), dty =0,
j(‘)t fotl <Eau(t1)§ue(ta)>c dt,dty
= [t [ B () B, o) dty iy, (24)

t t ty,  ~ o~ ~
Iy J 3 (Ban (8B, () B, o(te)). dts dty dty = 0.

Differentiation of these equations with respect to time
leads to equations for the integrands. Difficulty arises
with the fourth order term. From (14) we get

t t t to , o~ ~ ~ -~
.[(; ./;) ! j:) 2 ﬁ) 3<B¢¥u1(t1)Buluz(tZ)Bnzua(ts)BuSB(t4)>c
X dt, diy dt, dty

t t t t ~ ~ ~ ~
= fo I fo 2 [ 3(Boy () By (8 By pu (£ B, p(Ea))
X dtydt, dtydt,

t rt t to )2 ~
- fo J;) ' fo ! fo 2<Bau1(t1)B»1nz(sa»

X (B (£ By 4(S9)) dSy dtydSyty . (25)

oty

It can be seen that this is nonvanishing if B(#) is not
purely random by considering the special case in which

(Eaﬁ(t)guv(S»: ZQaBuuw(t - S): (26)
wherein ¢(f-S) is not a delta function, but instead is
nonvanishing for nonzero values of [{—S|. For example,
¢(t — S) may be proportional to exp(~ a|f-S|). Using the
two symmetries @ 45,,= Quuas and @{f~ S)= @(S-1),
the Gaussian property, as expressed by (20), leads to
the following expression for (25):

t rty [ty (tyn ~ ~ o~
fo fn ! fo zj;) 3‘B"“l(tl)B“1“2(t2)B“z“a(t")B"sB(t‘»"
X dt, dts dt, dt,
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trt ¢ t
=4 fo fo ! ﬁl 2 fo S{QaululuzQuzu3u38¢(tl - t2)<0(t3— t4)
+ Qa KyH gl aQulugu sﬁ(p(tl - ta) ‘P(tz - t4)
+ Qo 389 o o V1 = E) (L2 - t3)} dty dts dt, dty

t rt ¢ t
-4 fo fo ' fo ' fo aQﬂ‘ulhuzQuzususﬂ‘p(h_ S ¢ltz = Sy)
x-dSy dt,dS, dt,. (27

The factors of 4 come from 22 as indicated by (26). The
negative term is the negative term in (25) replaced by
(26). The three preceeding positive terms are the m =2
case of the second equation in (20). There are 24 permu-
tations to sum over, but only three distinct terms occur
as a result of the two symmetries mentioned above. On-
ly the first positive term in the right-hand side of (27)
contains a matrix expression which matches the matrix
expression of the negative term. The other two positive
terms cannot be cancelled out at all! However, if

@(t - 8)=5(¢ - S) then study of these extra two terms will
show that their integrals vanish as a result of the time-
ordered upper limits of integration,? and the remaining
positive and negative two terms will exactly cancel!
When ¢(t-S) #6(t - S), the above vanishing of integrals
and cancellation of nonvanishing integrals fails to occur.

That the purely random property ultimately leads to
(23) will not be proved here since it has been proved in
another paper.! However, here it has been shown that
without the purely random property, already the fourth
order cumulant will not vanish for time dependent
stochastic matrices which do not commute at unequal
times. Consequently, the cumulant expansion will not
truncate to a single term, but will involve all even
order cumulants. Thus, no real simplification is
achieved using cumulants.

APPROXIMATION PROCEDURES

Various physical problems involve computation of a
quantity of the form

(T expl [ O(S) dS]), (28)
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wherein O(S) is an operator parameterized by S, which
may or may not be the time variable, and (- -:) denotes
some kind of averaging such as a canonical average
over some or all of the variables O(S) depends upon, or
a ground state expectation value, or some other “aver-
aging.” Many times one sees in the literature the in-
troduction of cumulant techniques in order to handle the
computation of (28). Often it is argued that to good ap-
proximation O(S) behaves as if it were Gaussian, and
then the cumulant expansion is truncated after the sec-
ond cumulant. However, the validity of such approxima-
tions also requires that it be demonstrated that to good
approximation O(S) behaves as if it were also purely
random. Then, and only then, the truncation of the
cumulant expansion is a good approximation.

One application of this kind of approximation proce-
dure in which both Gaussianness and pure randomness
were considered has been presented by the author in
another paper.®
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We develop a group theoretic method based on results of Winternitz et al. to compute and classify
all first- and second-order raising and lowering operators admitted by Hamiltonians of the form H
=-(1/2)A, + V (x, ¥). The key to our results, which generalize to higher dimensions, is a proof that

H admits a second-order raising operator only if the Schrodinger equation separates in Cartesian,

polar, or elliptic coordinates.

INTRODUCTION

. We call an operator R a raising operator for a
Hamiltonian H if [H, R]=XR, where X is a nonzero real

constant. If ¥ is an eigenvector of H with eigenvalue

©, Hy=py, it follows easily that H(RY) = (i + )Ry, Thus,

knowledge of R permits one to obtain new eigenvalues

and eigenvectors of H from old ones.

In this paper we give a complete classification of all
potentials occurring in the two-dimensional time inde-
pendent Schrddinger equation Hy= ) which admit first-
and second-order raising operators. The classification
of first-order operators is almost trivial, and it is only
the second-order case which presents difficulties.
Moreover, as one can see from the results of Secs, 2
and 3, there are very few potentials admitting second-
order raising operators, and all such potentials are
generalizations of the harmonic oscillator.

The principal interest in our results lies in the fact
that they are exhaustive and in the method used to ob-
tain them. Proceeding directly, one can show that a
Hamiltonian admits a second-order raising operator if
and only if the corresponding potential V satisfies the
system (2. 8)—(2, 10) of second-order overdetermined
partial differential equations. However, while one can
easily find some solutions of these equations, it is
extremely difficult to determine when one has found all
solutions. We have not been able to solve these equa-
tions directly.

In order to solve (2, 8)—(2. 10) we have adopted an
indirect method based on results of Winternitz et al, ,*
which relates this problem to the Euclidean group E(2).
In Ref. 1 the authors show that H admits a second-
order symmetry operator if and only if the correspond-
ing Schrddinger equation separates in Cartesian, polar,
parabolic, or elliptic coordinates. In this paper we
show in essence that if H admits a second-order raising
operator, then it also admits a second-order symmetry
operator, hence that the Schrédinger equation must sep-
arate in Cartesian, polar, or elliptic (but strangely, not
in parabolic) coordinates. This means that we can re-
strict ourselves to a search for solutions of (2, 8)—(2. 10)
which separate in one of these three coordinate systems.
In this case (2. 8)—(2. 10) reduce to systems of ordinary
differential equations which, though tedious to solve, are
tractable. Thus we obtain a complete solution to our
problem,

Our method can be generalized to the more interesting
three-dimensional case? as well as to other types of dif-
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ferential equations, for example, wave equations or the
time dependent Schrddinger equation.,

The results of Refs. 1,2, and this paper show the in-
timate connection between second-order raising and
symmetry operators and the separation of the Schré-
dinger equation in some coordinate system. It appears
that higher-order operators will not be of great interest
unless and until one can find similar indirect means of
characterizing them,

The paper is organized as follows: In Sec. 1 the prob-
lem of first-order raising operators is solved, while in
Sec. 2 the problem for second-order operators is form-
ulated as a system of overdetermined second-order
partial differential equations. We then obtain some
solutions, but not the most general class which must
await the further development of the connection with
separation of variables in Sec, 3, where we complete
our classification of all solutions. Finally in Sec. 4,
we give the action of the raising and lowering operators
on a basis of eigenfunctions of the Schrédinger equation
for each case.

1. FIRST-ORDER OPERATORS
Let H be the formal Hamiltonian

H=- %(an"’avy)"’v(x,y) (1.1)

acting on the Hilbert space L,(R,) of square integrable
functions in the plane. Here V(x,y) is a real-valued
thrice-differentiable function of (x,y) to be determined.
We search first for all Hamiltonians which admit a
first-order raising operator R, i.e., we look for all H
which satisfy

[E’E] = hl_?,

where A is a nonzero real constant and R is a first-
order partial differential operator

(1.2)

R=ay(x)0, + y(x, )0, + 05(x,3), ||+ ] eq[?0.
(1.3)
Without loss of generality, we can assume that R is
real, i.e., that a,, a,, a; are real-valued functions.
Substituting (1.1) and (1. 3) into (1. 2) and equating co-
efficients of 8., d,,, y,, 35, 9y, 1 On both sides of the re-
sulting expression, we obtain the conditions

0,0y = 0,0,=0, axa2+aya1=0’ (1. 4)
(Oxx +94y) 0y + 28,05+ 200 =0,
(1.5)
(g + Dyy) @p + 20,03 + 210y =0,
1484
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(Dge + 3yy) @3 + 2010,V + 20,3,V + 2205 = 0, (1.6)

It is easy to show that these equations have solutions if
and only if

Vix,)
_ _ 1,279 2y _ Mx/a ifa+#0
=flbx = ay) + 2N+ {Acy/b if a=0, b#0.

Here, a,b,c are real constants with @®+b%>0 and f is
an arbitrary real differentiable function, The raising
operator is then

(1.7

(1.8)

By a simple translation and rotation of the (x,y) co-
ordinates we can obtain new Cartesian coordinates X, Y
in which

R=ad,+bd,— Max +by) +c.

V(X,Y)=g(X)+2\'Y?, R=08y-1Y, 1.9)
where g(X) is arbitrary. In these coordinates the
Schrédinger equation

HY(X, Y) = pi(X, ) (1.10)

has solutions of the form
Yy, n=exp(= [A| Y/H,IXTVGX), n=0,1,2,...,
(1.11)

where H, is a Hermite polynomial® and G(X) is a square
integrable solution of the equation

G” = 2g(X)G=[-2u + [A| @+ 1)]G.
It follows easily that

~VIM Ppormet i A>0
Ezpll-yn: f— 3 <
122V 1M dyapnet I X <0,

2. SECOND-ORDER OPERATORS

Next we consider the more interesting problem of
computing those Hamiltonians H which admit a second-
order raising operator R:

(1.12)

(2.1)

Here o;(x,y) is a real function of (x,y) and o+ a+ai

> (0. Substituting (1.1) and (2. 1) into (1. 2) and equating
coefficients of the third-order and second-order deriva-
tives, we obtain equations for «y,..., as; which can easi-
ly be solved to yield

R=00,, + 00y, + 030y, + 043, + 050, + ag.

Otl=—A1y +A4, a2=A1x+A2y +A3, a3=—A2x +A5,
0= My — My’ — Mgy — M x ~Agyt+A,,

05=— M x% + Moxy — Mgy +Agx + Ay,

(2.2)

where the A; are real constants. The constraints on o,
and V are obtained by equating coefficients of 9,, d,, and
1in (1.2):

3By + 0y) @y + 0,00 + 204V, + @y V= — Ay, (2.3)
3(Dyp + Dyy) 05 + 3,0 + @y V + 203V, = = A, (2.4)
3(Bgp + Oy g + Ay Vi + @V + 03V + @V + 015V, = = Mg,
(2.5)
Relations (2. 3) and (2. 4) yield
0,0g=— 201V, — ayV,— Aoy + A, @.6)

0,0= = a3V, — 203V, = hag +Ag.
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Substituting (2. 6) into (2. 5), we obtain an expression for
the multiplier o, in terms of V:

20 = (Ay - 205V, + (Ay - 20V, + A(Ayy +Agx = Ay~ Ag).
2.7

Equations (2. 3) and (2. 4) may not be consistent with
(2.7). To guarantee consistency, we differentiate (2.7)
to compute 9,0;, 9,0 and substitute into (2. 3), (2. 4).
This yields the consistency conditions for the potential:

(A — 20) Vo + (A) = 205) Vi + 610V = 2(8,05 — M)V,

= - 2%, +2\4,, (2.8)
(A= 20) Ve + (Ag — 20a5) Vyy — 2(3,04 — Q) V, + 6203V
=< 22+ M4, 2.9

Thus, corresponding to any choice of the constants

A4, ...,A; the Hamiltonian admits the raising operator
R, (2,1), (2,2), provided that V satisfies the partial
differential equations (2. 8) and (2. 9). The multiplier o
for R is given by (2. 7).

We can obtain another consistency relation for V by
differentiating (2. 8) with respect to x, differentiating
(2. 9) with respect to y, and subtracting the second
equation from the first:

(Agx + Agy + Ag) Vi + 2(A1y — Apx = A+ A5)Vyy
e (Aix +A2y +A3) I/yy + 3A1‘7,’. - 3A2\7y
= - K(— 3A1M+3A2A.3)+).A3+2A6). (2. 10)

Although (2. 10) is a consequence of (2. 8) and (2. 9), it is
useful in its own right,

In conclusion, to find the potentials V admiting rais-
ing operators, we must solve the system (2. 8)—(2. 10)
of overdetermined second order partial differential
equations.

To simplify the solution of these equations, let us
consider the action of the Euclidean group E(2). Under
the action of a Euclidean transformation the coordinates
(x,¥) go into new coordinates (x’,y’), where

x'=xcos¢p +ysing +a, ¢,a,bcR,

- 2.11
y'=—xsing +y cosd +b. ( )
Since Euclidean transformations preserve the Laplace
operator, we have

- %(ax‘x' + ayy’) + V(x,sy') =~ %(azx+ ayy) + V'(x; y))

where V'(x,y)=V(x’,»’). Thus the Hamiltonian H is
transformed into a new Hamiltonian H' = — 3(8,,+ 2,,)
+V'(x,y). Similarly the raising operator R is trans-
formed into a new raising operator R’satisfying [H’, R’]
=\R’. Considering the set M of all pairs {V, R} which
satisfy (1.2), we see that E(2) acts on M as a trans-
formation group. We will consider two solutions of

(1. 2) as equivalent if one solution can be obtained from
the other by a transformation (2. 11), i.e., if both solu-
tions lie on the same E(2) orbit. Clearly, it will be
enough for us to find a solution, if one exists, corre-
sponding to a single point on each orbit.

For the orbit analysis we make use of (2. 1) and (2. 2)
to write a general raising operator as
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I_%;éA,Q_ﬁac(x,y), 2.12)

where
Q1=MP;-\xM, Q,=-MP,+\yM, Q3=P; Py-\yP;,
(2.13)

Q4=P¥-MP1’ QSng_hyPZ’ QG=M7 Q7:P2’ Qszpi-

Here,

(2.14)

are the basis operators for the Lie algebra action of
E(2). We see that the pure differential operator compo-
nent of R is described by the vector (4,,...,4,) and
that the action of E(2) induces an orbit structure on the
set of all such vectors. A direct computation shows that
a rotation through the angle 6 [Eqs. (2.11) with a=5=0]
transforms (A;) into (4j) with

Py=9,, Py=9,, M=x0,-y0,

Al{=cosf A +sinfA,, Aj=-sinfA +cosfA,,

Aj=cos826A;+sin26 (A, - A;),

Al=-sinf cosf A +cos?0 A, +sin*0 A, (@. 15)

Al=sinf cosf Az +sin®0 A, +cos?d A;,

Al=2sin’@ A; - A5ind cosf A, + A sind cosf Az + 4,

Aj=cosfA;+sinfA;, Aj=-sinfA,+cosfA,.

Similarly, the translation x —x +a yields
A{=A,, A}=A,, Al=aA,+A;,

Al=4Ay, Aj=-ald,+4;,

§==2a0A; +A;, Al=-a® A +aA +A,, (2.16)
§=— GNA + Ay,
and the translation y =y + b yields
A{=A,, Aj=A,, Al=bA,+A;, A[l=-DbA;+A,
Af=A;, Al=blA,+A, (2.17)

f==bMg+A;, Aj=-0NA, - DAA; - bAg+ A,

Using these results, we will choose a point on each
E(2)-orbit. We start with a general operator 7 A;Q;.
Noticing that A} +A? is an E(2)-invariant, we see that
there are three cases:

Case 1: A}+A}>0.

Case 2: A=A,=0, A}+A}+A%>0.

Case 3: Aj=Ay=+++=A,=0, Al+AZ+A%>0.
In Case 3, R is first order and has already been treated
in Sec. 1. In Case 1 we can perform a rotation so that

A]>0, Aj=0 and then translate so that Aj =Af =0. Thus
the vectors (4;) of the form
(Aho; 0, O,AS!AG;AY,AB)) A1>0’ (2~18)

cut each Case 1 orbit exactly once. In Case 2 we can
perform a rotation such that A{=0, Thus, vectors of the
form

(0,0,0,A,,A;,A4,, A, Ag), Al+AZ>0, (2.19)
cut each Case 2 orbit at least once.
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These Case 2 solutions of (2. 8)—(2. 10) are easy to
find. Indeed, assuming that R=3A,Q;+ oz and V are
Case 2 solutions, we can use (2. 19) to require 4;=A4,
=A;=0. Then (2. 10) becomes

2(A5 - A Vey= — 204, (2. 20)
Suppose first that A;—A,+0. Then (2. 20) has the general
solution

V== [Agy/(As - A)]+fx) +8B),

where f and g are arbitrary. Substituting this solution
into (2. 8) and (2. 9), we find A;=0 for consistency, and
so V=f(x) +g(y). If both A; and A; are nonzero, we can
perform translations (2. 16), (2.17) to achieve A;=A44=0,
Thus Eqgs. (2.8), (2.9) reduce to

xf" +3f =2, Ag"+3g =2y
with general solution
2
Vix,y) = %(x2+y2)+%+-%+c, a,b,cc R,
Y @. 21)
(AJ) = (0, 0’ 01A45A5s 0’ 07 0)) A4’A5 #0,

If A;#0, A;=0, we can perform a translation (2, 16)
to achieve A;=0. Then Egs. (2. 8), (2.9) reduce to

xf" +3f" =%, (g"-2AHNA;=0
with solutions
h2
Vix,y)= n (2 + 4y?) + % +by +c,

(2. 22)
(Aj> = (0, 07 0;A47 07 0’A73 0), A41A’[¢0

and
%2 a )
Vix,9)= 5 + 2+g(), g() arbitrary,

(2.23)
(Aj) = (0’ 0, 0’A4’ 0, 0; 0, 0)9 A4¢0-

The cases A;#0, A,=0 are identical to (2. 22), (2.23)
with x and y interchanged.

Finally, suppose A;=A;#0. Then (2. 20) yields A44=0,
and by applying translations (2.16), (2.17) we can
achieve A,=A;=0. Thus Egs. (2. 8), (2.9) reduce to

T GVa 3V, 2V =N, V3,020 =N

with general solution

2 2
18 0

(2.24)
(‘qj) = (0, o, 0’A4;A4; 0,0, 0): A, #0.

Here g is arbitrary, x=vcosf, y=7vsind, f(6)=g(tand)/
in2
sin‘6,

This completes the analysis of Case 2. However,
Case 1, Eqgs. (2.18), is much more difficult, We have
not been able to discover a direct practical means of
computing all solutions of (2. 8)—(2. 10) corresponding to
this case, In the next section we develop an indirect
group-theoretic procedure which not only enables us to
solve these equations but also provides clear insight
into the structure of second-order raising operators.
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3. SEPARATION OF VARIABLES

Let us note that raising and lowering operators occur
in pairs: If R is a raising operator for H,

[H,R]=)R, 2#0, A€R (8.1)
then, taking the formal adjoint, we have
(1, )= - (3.2)

so that _I_f is a lowering operator (raising operator by
- 7). In particular, if R takes the form (2. 12), then

8 8
R'= jZ_}lA,Q;Jf Qg =24 A;Q;(= N) + (3.3)
where
A,-A,, 1<j=<5,
As—‘As, A=A -4y, Ay=4,- A, (3.4)

Gg= 05— MAy+Ax— A, - Aj).

Here Q;(- ) is obtained from @;, (2.13), by replacing
A with — A, These results follow from (2. 13) and the
following facts:

Qi=MP +xM+Py -2y, Q3==MP;—\yM+P,~

Q=P Py +\yPy, Qi=Pi+)xPy+X, (3.5)

Q=Pi+0Py+), Q;=—M, Q1=—P,, Q;=-P,.

Moreover, it follows from (3. 1) and (3. 2) that [H, S]

=0, where S=[R,R'], i.e., Sis a symmetry of H. We
are concerned with the case “where R and R* are ' both
second-order differential operators so that we would
expect that S was in general a third-order operator.
However, we see from (2.12), (2.13), and (3. 3) that the
purely second-order terms in R and R* are identical.
This means that S is at most a second-order operator.
Indeed for S=§ +B, where § is a pure differential opera-
tor and B is a multiplier function, a straightforward
computation yields

§ = PHANA] + 20A% + A} - 24,4, + 24,4;) + PH(40AL + A}
— 24,4~ 2A5A¢) + P1Py(2AAg - 24,4, + 2A5A, + 604445
+20M34, - 44,4, +4AA,) + ME(40A} + 10AD) + (MP,
+ PyM) (= MAg + 40 A - AAg — 30AA,) + (MP,
+Py M)(- AjAg+ 20A A5 - 1 A,A5+ Mp4A,). (3.6)

At this point we can make use of the results of Ref, 1,
There one studies differential operators

L =AP}+BP,P, + CP} + DM? + E(P\M + MP,)
+ F(PyM + MPy) +y(x, ) 6.7

such that [H, L]=0, where H is given by (1.1). A princi-
pal result of Ref 1 is essentially that if H commutes with
a nontrivial L, then the Schrédinger equation Hy=py
separates in one of four orthogonal coordinate systems.
More specifically the authors study the action of E(2) on
the set of all operators L via the coordinate transforma-
tions (2, 11). They show that the E(2)-orbits are of five
types.

L. Pi-Pi+a(P}+P))+B,
L. PM+MP;+a(P;+P})+8,
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01 M +a(P}+ P +8,
IV. M?+31%(P} - P)+a(Pt
V. a(P}+PY)+B, a,lcR,

(3.8)
+P3) +B,
>0,

Every L lies on the same orbit as a constant muiltiple of

exactly one of the elements I~V. (The term P} + P} oc-
curs with an arbitrary constant because the Hamiltonian

always commutes with itself.) Thus by applying an ap-
propriate E(2) transformation we can always assume
that L is equal to one of these five forms.

If L takes the form I, then, according to Ref. 1,

Vix,y) =flx) +g®), 8.9

and the Schrédinger equation separates in rectangular
coordinates. If L takes the form II, then

v L&) +&(Er)
Ei+ &)

and the Schrddinger equation separates in parabolic
coordinates, while if L takes form III,

V=fr) +5(6)/7%,

and the equation separates in polar coordinates. If L
takes form IV, then

__f0)+g(p)

cos‘o - coshp

1-8), y=tk, (3.10)

, x=3(§

x=7co0868, y=vsind (3.11)

x=1coshp coso, y=1sinhp sino,

(3.12)
and the equation separates in elliptic coordinates. Final-
ly, if L takes form V, then L is a multiple of H and
there is no information about V.

The above results apply immediately to our study of
the operator S. First of all, by putting R in one of the
forms (2. 18), (2.19), we see from (3. 6) that if Ris
truly second-order, then § is truly second-order (never
first-order).

Note that the coefficient of M? in (3. 6) is proportional
to A +A2. If this coefficient is nonzero, then Slies ona
type III or IV orbit, i.e., the Schrddinger equatlon
separates in either polar or elliptic coordinates. If A,
=A,=0, then S lies on a type I, II, or V orbit.

We consider Case 2(A, =A,=0) first. Then from (2.19)
we can also require A;=0, A} +AZ>0, Substituting into
(3.6), we find

S=42ALP; +40ALPS + 4A44(A5 - A) PPy + . (3.13)

It follows that type II orbits never appear, only type I
and V orbits are possible. Moreover, our analysis of
(2. 20) has shown that we can find a potential V only if
Ag=0. Thus S corresponds to a type I orbit if A2 #:A and
to a type V orbit if A} =A% The method of Ref. 1 y1e1ds
no information for type V orbits but our direct approach
in Sec. 2 has yielded the solutions (2. 24), separation in
polar coordinates, and the special case A;=— A; of
(2.21), separation in rectangular coordinates, For A}

# A the results of Ref. 1 show that H lies on the same
orbit as a Hamiltonian whose potent1a1 takes the form
V=f(x) +g(y). This agrees with the results (2. 21)—

(2. 23),

So far we have merely verified previous results. How-
ever, the method of Ref. 1 now allows us to find all
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solutions of (2. 8)—(2. 10) corresponding to Case 1. In-
deed, if A}+A}>0, we know that H lies on the same
orbit as a Hamiltonian with potential of the form (3, 11)

or of the form (3.12). Thus, we can find all Case 1
solutions of (2.8)—(2.10) by requiring that V fake either

the form (3.11) or (3.12). That is, every solution V lies
on the same orbit as a V which separates in either
polar or elliptic coordinates. This fact is of great im-
portance for it allows us to separate variables in (2. 8)—
(2. 10) and reduce these coupled partial differential
equations to uncoupled ordinary differential equations
for fand g.

At this point we have proved the following fact: If a
Hamiltonian H admits a second-order raising operator
then the Schrddinger equation Hy= u) separates in either
rectangular, polar or elliptic coordinates. Of course the
converse is false.

To find all cases when S is type III we substitute the
polar coordinate expression (3.11) into (2. 8)—(2. 10)
and find all solutions which correspond to type III orbits.
A tedious computation yields the single solution

2 asinf+b A2 a b
V= —— 4 —— +c=E(x2+y2)+—77—L-+;§+c,

2 7 cos‘d x°Vx2 + 92
(3.14)
(A4))=(A4,0,0,0,0,0,34,0), A;#0.
Every type III solution lies on the same orbit as (3. 14).

To find all cases when S is type IV we substitute the
elliptic coordinate expression (3. 12) into (2. 8)—(2. 10)
and find all solutions which correspond to type IV orbits.
We obtain
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_ 2X}(cosh®p + cos’o — cosh’p — cos?s) + b(1/cosh?p — 1/cos’c)

v cos’c - cosh’p
+c =322 +9Y) +b/x% +c, (3.15)
(AJ) = (AI’ 0: O; 0’ 09 O’AT; 0)’ Ai ¢0’ ZA’!#:Air
x = coshp coso, y=sinhpsino,
_ A (cosh®p +cos'o —coship-cos?o) A, ,
V=3 cos’0 — cosh’p €= @ +39+c,

(3.16)
(Aj) = (AI, 0, 0; 0’ 0; O’A'I’AB)’ AI’AB #0.

The determination of all solutions of Egqs. (2. 8)—
(2. 10) for elliptic coordinates is extremely tedious due
to the complicated nature of the coefficients in the resul-
tant coupled ordinary differential equations. Our method
is to examine these equations in the vicinity of some
convenient point which may or may not be a singularity
of the potential, [This singularity cannot be essential
since from (2. 10) in elliptic coordinates one can see that
if there is a singular point it is regular. ] For example,
examination of (2. 8)—(2. 10) about the points sinoc =0
yields six differential equations involving only g{p)
which must be compatible. In this way one can proceed
until all possibilities for the parameters A; and poten-
tials V are exhausted.

4. EXAMPLES

In this section we explicitly solve the Schrédinger
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equations corresponding to the above potentials and ex-
amine the action of our second-order raising operators.
Without loss of generality we can assume >0 and set
the additive constant ¢ equal to zero for each potential,
In each case we solve the equation Hy=py correspond-
ing to appropriate choices of the potential parameters.

Consider first the potential (2. 21),

A2 a a
V(xy, x,) = —B-(xf +x§)+;% +;§ .

Bound states exist for @, > - %, and the normalized
eigenfunctions are

A 2 kil (A2 54)9; 172
& - - -
CUC OB P ey B S 20

Xx} /uu;Lk#"i (Ax';’/Z) R

vi=2(1+8ay)!/?,

4.1)

UEE= (R, + Ry + 1) + EA(2 Yy £ 1),
k;=0,1,2,... .

For details on the degeneracies see Ref. 1,

Here LY(x) is a generalized Laguerre polynomial, ®
The raising operator in x, takes the form

R==3(2/\ 8ypy = 2010, + S0 — day/ M- 1) (4.2)
with action
Ry n, = V(ky+1) (kg + 1y +1) ¢k1+1, Ry
(4. 3)

£+¢k1k2 =Vky (kg + 1y) Va1, 2o
There is a similar operator in x, which raises the &,
index.
The potential (2. 22),
V%, %5) = $A* (6] + 4x3) + (ay/2) + ayx,,

has bound states for a, > - 3, with eigenfunctions

A\ 17470\ Us) /2 Bl 1l 172
‘pii"z(xi’x”=<7r> (E) (k2!2*21"(k1i v+ 1))
A an)? a
xexp[- 3 (x2 + X%) ]sz [w/_)( (xz + X%)]
o (- 2oz i),
v= 3102yt

2\=3/2
u*=x[k1+k2+1i§—§(%) ] ki k=0,1,...

4.4)

Details on the degeneracies can again be found in Ref. 1.
This potential takes the form (1.7) with x,=x,=x, x,, %,
=9, a=0 so that it admits a first-order raising operator
(1.12) in x,. It also admits the second-order operator

(4. 2) with action (4. 3). Similarly the potential (2, 23)
admits a second-order raising operator in x=x; with

the form (4. 2).

The potential (2. 24)
V=87 +£(8)/7

corresponds to eigenfunctions

A (s+1) /2 2(711) 1/2
i 0=(3) " (e
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Xexp (— ﬁ) r’L’(er>6 (0),

n=0,1,-" (4.5)
where O, is a solution of
e.le' + [Sz - 2f(9)]ea= o,

and g =An+3S+3%), s>-1. The raising operator takes
the form

1 1 x’rz
B:—Z[a"-)-(;—)\.’r) ;2+ K]

with action
Ry, o=\ (n+s+1)m+ D] 2 o
R*Y, = A+ s}/ %y, ,. 4.7

For the above potentials it was always possible to
choose coordinates such that B could be expressed as a
differential operator in a single variable. In the re-
maining three cases this is no longer possible and the
action of the raising operator is more complicated.

The potential (3. 14),

)372 , asind+b
“9 T 7coste ’

has, for example, in the case a={a’-p%/4, b=—%
+(a?+p%/4, a>3, B>3, normalized eigenfunctions

~ ApDEDT(@+B+k+1)(a+B+2k +1) 1/2
V(7 6)= (I"(n+§(a +B) +k+3)T(a+k+1)T(B+E+ 1)2"‘*5)

Xexp(_ )\,,2/2)(\/3;,,,)(“5)/2»,»1 /2L'(lu+a¢1q,) /2(7\7’2)
X(1 +8in8)8/2*1/4(1 — ging)*/2*1/4 P2 B(ging),

n,k=0,1,2,0¢-,

(4.8)

and energy eigenvalues p = A[Zn +k+3(a+p)+1]. Here,
P2 8(x) is Jacobi polynomial. * The raising operator is

R=- siné 3¢ +COS6 9,9 — 38in03, - (cose + XY cose) 0g
7 27
(cy - 8% (sin®6+1) (az +p? 1) sind .
4r cos?d T\ 2 4)7coste * 2 5109
4.9)
and its action takes the form
Ell),.,f Yny kzpn, et ¥ En, k‘pnd. kel

(4.10)

E+¢m 2™ Vnykel lpn. k-1t 'En-,-i, R+l z”n-t, R+

where v, § are rather complicated real constants, non-
zero in general, Thus, R no longer raises a single in-
dex n or k.

The potential (3. 15),
V=323 +92) + b/x?,

is of the form (1.9) in y. Thus, it admits a first-order
raising operator with action (1.11), (1.12). Further-
more, this potential corresponds to a special case of
(2.21) so that its eigenfunctions are given by (4.1) with
a;=b, a,=0, and it admits two second-order raising
operators of the form (4. 2). The potential is also a
special case of (2. 24) and (3. 14) so that it admits the
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raising operators (4. 6) and (4. 9). However, the.poten-
tial admits the further raising operator

R=9(0,— N2x% = 2b/x2 = )) - %(3,— M) (2,+2y), (4.11)

- which is not admitted by the earlier mentioned potentials

in their generality. In Cartesian coordinates the Hamil-
tonian has (unnormalized) eigenvectors

W1y, %) = €XD(= M/ ALY O Hy, (VR),
(4.12)

v=(2b+)4, b>-3,

and eigenvalues
p=X2ky +kyt v+1), Ry ky=0,1,-"
The action of R is given by
RURE 3y = = N /22y £ v+ By, gt = 4N 2 (g + Dol et
(4.13)
R 4= = 202y 2 V)i g, iyt — 2N PRy 2Ry £ 0+ 3) i g

The potential (3. 16), isotropic harmonic oscillator, is
a special case of all previous potentials except (2. 22)
and it admits all of the raising operators allowed by
these potentials.

The raising operator @; + a; admitted by potentials
(3.15) and (3. 16) implies via our procedure that the cor-
responding Schridinger equations separate in elliptic
coordinates, Thus one might expect that the action of
these raising operators would be simplest in elliptic
coordinates. This is not the case. The elliptic co-
ordinate solutions of the harmonic oscillator Hamilton-
ian are Ince polynomials, * but the corresponding poly-
nomial solutions for (3.15) in elliptic coordinates ap-
pear not to have been studied in any detail. In any
event, the action of the raising operator on an elliptic
basis is not transparent.

In conclusion, we remark that Refs. 5 and 6 contain
results related to our work,
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Generating functions of the 12j and 15j angular momentum recoupling coefficients are computed
explicitly in the Bargmann formalism. Symmetry properties are deduced therefrom. A geometrical
MGobius strip representation (originally due to Ord-Smith for the 12j case), which can be generalized
to all n, suggests a 4n-fold symmetry for the 3nj coefficients (n >4).

I. INTRODUCTION

The structure of the angular momentum 9j coef-
ficient'" has been studied in the Bargmann approach, 45
It is the purpose of this note to extend some of the con-
siderations to higher 3nj coefficients.

(A) The generating functions for the 12j and 15j co-
efficients are explicitly computed in the Bargmann
scheme. It is a tribute to the powerful Bargmann lem-
mas on the Laplacian integrals* that those seemingly
complicated 6n-fold integrals can in fact be systemati-
cally carried out. Thus in principle the generating func-
tions for the 3nj coefficients are computable for ar-
bitrary » in the Bargmann approach. Alternatively, the
generating functions can also be found in the algebraic
recursive scheme of Schwinger.® For n=4 and 5, they
have been verified; the answers are essentially the same
apart from a difference in an over-all phase factor. ¢

(B) Symmetry relations of the 3nj coefficients (=4, 5)
are here deduced on the basis of the explicit knowledge
of their generating functions. They turn out to confirm
the 4n-fold symmetry (n=4,5). For n=4, this was
first discussed by Ord-Smith’ using (i) a geometrical
Mobius strip picture which incorporates the basic 3j
triangular relations and (ii) an reduction formula (attri-
buted to J. P. Elliott) of the 12j coefficient as a sum
over products of four Racah coefficients.

The Mbbius strip picture can be properly generalized
to all »n, (There is a slight technical difference between
even or odd n cases.) Thus a basic 4n-fold symmetry is
expected to hold for arbitrary n. The situation may be
summarized as in Table I. Lower order coefficients (for
various reasons such as looser structure) are seen to
possess larger symmetry. We find it gratifying that for
n=4, the symmetry for the 3nj coefficients becomes
more systematic. [Note, however, the remark (b)
below].

(C) Explicit expressions for the 12§ and 15j coeffi-
cients can be extracted from their generating functions.
However, in view of the excessively large numbers of
summations involved [namely, (2™! - 1- 3n)—fold], we
shall not write them down here. The reduction formu-
1as%'1° of 3nj coefficients in terms of 3(n - 1)j coefficients
on one hand, and in terms of the Racah coefficients on
the other, are probably more useful in practice.

The following remarks are made in view of the exten-
sive work on the theory of angular momentum by A. P.
Jucys et al.,*° although the present undertaking is en-
tirely independent of their approach.

(a) Jucys et al. have adopted a graphical method of
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their own; they were able to do calculations with the aid
of their graphical method. Qur emphasis, however, is
on the explicit calculation of the generating functions.

(b) There is a proliferation in the definition of the
3nj coefficients. As the number of j’s goes up, there are
obviously various different recoupling schemes. Thus
Jucys et al. have defined several kinds of 3nj coeffi-
cients. The ones we discussed here in this paper, the
canonical ones, correspond to what they call the first
kind. We shall not be concerned with those other than
the first kind here.

(c¢) We have independently rediscovered a set of re-
cursion formulas for the 3nj coefficients (i) in terms of
3(n - 1)j coefficients and (ii) in terms of 6§ coefficients. ®
These are known to Jucys et al. The basic 4n-fold sym-
metry is also implicit in their work. However, we wish
to emphasize that the methodology used are quite differ-
ent, especially in regard to the symmetry. Qur em-
phasis in this paper is to carry out the explicit calcula-
tion of the generating functions. From what we learn
from the previously known cases, we adopt the viewpoint
that all the symmetry of the 3nj coefficients is con-
tained in the generating functions. The symmetry should
be transparent and unambiguous in the Bargmann ap-
proach. What we have found is that (i) from our study of
the generating functions comes the basic 4n-fold sym-
metry (n=4, 5); (ii) the symmetry operations can be
transcribed to those on a suitably defined Mdbius strip;
and (iii) this geometrical picture and the 4»n fold sym-
metry is obviously valid for arbitrary » > 4.

Il. THE 12 COEFFICIENT

A. Definition

In analogy with the previously discussed n <3 cases, 45
we express the 12j coefficient (which is the recoupling
coefficient involved in adding five angular momenta to a
total j, or adding six angular momenta to zero) in terms
of sums of products of eight 3j coefficients. We adopt
the following labeling in Eq. (1) for the twelve j’s,
which is a slight modification of that of Ord-Smith:

Jso Joo a2 J23
{12.7}5 . Joo Jn J2a Jss3 (1)

12 Al Ha "
Jso Ja e e

TABLE I.

3nj recoupling coefficients Symmetry relations

n=2 6j Racah 144 [Refs, 8,4]

n=3 9j 72 [Refs. 2,9, 5]

n=4 125 16 [Ref. 7]

nz4 3nj general 47 [this work and Ref. 10}

Copyright © 1974 American Institute of Physics 1490
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FIG. 1. Mobius strip representation for the 12j coefficient.

m.m

=2 (jﬂo Joo min) (j61 Ju Fz e Ja j'za)

3t 14 ’
Mag Moo Jor mo, My, My, My, My My,

x (jzs Jas Jos\ (™30 Moo Jor\ Moy My Myp
Mg Mag Mos) \Tso Joo Mo/ \Jor Juu Jrz

x(mixz Mo ”.‘zs) Mg ”_’33 7‘”30)’ (2)
Jiz Jez Jos Jas  Jss Jao
where

j'Pqud” m’PaEmaP (3a’)
except

Jo1= oo Jo1= Jro (even-n rule),

A - (3b)
Mo =My, M =My,

It is clear that there are triangle relations governing
in each of the eight 3j coefficients. In the present
notation, each 3j factor calls for a set of consecutive
triplet indices (p—-1q, pg, p+1q) or (pg-1, pg, pgq
+1), ($,4=0,1,...,2-1, modn). It is convenient to
label a set of vertices p,p’ accordingly. This results in
the Mo6bius strip representation’ (see Fig. 1). Note that
the index convention is as follows: (i) j,, connects from
vertices p to g; (ii) j gets primed if the first index is
primed; the prime on the second index is suppressed
[except for those for t,» see Eq. (10)]; (iii) rules (3a)
and (3b) are to be obeyed for even n cases [cf. Eq. (22)
for odd #]

;B. Generating function of the 12 coefficients

The generating function is defined as follows:

GuD(t, #)= 2 N7 {123} 11 tioatba, (4)
R, K 'Q

where the normalization factor is given by

N,= [ﬁ (J,+ DT+ 1)1/ (rr k,,! k;q!)] 1z, (5)
=0 pra

For a triplet of indices (p~1,p, p+1), we define
J,Ej”_1+j,,+j“+1=%,_‘qu, (6a)
2= g1t ioptIper»= 22 jqp:Ej;:q’ (6Db)

q q

and
Rpo=dy= 2y (6c)
k,PaEJ’ﬁ_ 2]';“. (6d)
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In a manner which is perfectly parallel to the known
cases n < 3, 5 the generating function can be converted
into the following integral:

3
(1, 1)= [ dusDex(3; (0,4 D3)), 0
where
du()=mVexp(- ¢ £)dV, t=t+in,
D,Et,x’é,‘ﬂp, p=0,1,...,3, (83,)
Dy=t,x&,-m, (8b)

denote 3X 3 determinants formed by components of the
indicated 3-vectors. The components of ¢, are labeled
by the triplets (£,,.;, t,,, t,,.,); likewise for #,. For &,
and 71,, a distinction has to be made involving the index
0, namely for I+0, &, n, have components labeled by
(I-11, U, 11+1); likewise for ; and 77;. On the other
hand, for p=0, the components are

Eo=(Ens) Egor 7761); Mo = Mos» Noos — E—:)l)’ (9)
g{)E (563; g(’)oy _Tloj,)s TTGE (77(')3’ 77:)0’ Em)-
This complication comes about because two of the 3j co-
efficients in Eq. (1) (namely those involving the 0 and 0’

vertices) appear in a mixed conjugate fashion. In (8b)
and (9), we have

ba=Epr The =N (10)
while 4, =¢,. are distinct from ¢ .
The 24-fold integration in (7) can be carried out in
four steps. The calculation is straightforward with the
aid of the Bargmann lemmas on the Laplacian integrals. *

A slight extension leads to the following formula which
turns out to be quite useful®:

J dpg(8) duyn) exp(tXt-n + ' XE - q+c-E+d-7)

=(1-t- )t exp[(txXc-d) (1—¢t-#)1). an

The final answer for the generating function (7) is
Gt #)=(1-a, - a,—a,—a,— a;)?, (12)

where

4=ty ty+ f1ot23 + fsofm + fosfm’

a2 = tOOtll( t122t€32t30 + t§3té3t21) + t11t£2t33t61t03

+ tzztgatootmtio - tpq

-}

b
a;=- t00t12t32 - tutzstos + tzztsotlo + taatoltzv
a,= t:)otlot,lztzltlzstaztgo + tgltéltzat;ztsotsstm

+ t’zzvtgztaot:mtmtlot’lz + t?;:;tz)atmtmtiztzltéa

-f,

ba pa>
a5 = foofufzzfss - foofllzzsAsz - A11izzzoszao

+ fzzf33f01flo - Zasioofmle + fsofosfmizl

- 501210223232- (13)
with

foa= boelier (14)

C. Consistency check

Setting one of the appropriate angular momentum to
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be zero should reduce the 12j coefficient to a 9j coef-
ficient, and this implies that G*® should reduce to G'®,
which is known. 5 Our expression (12) satisfies this test.
[To be precise, there are some sign difference among
some of the corresponding terms and this is attributed
to a difference in the choice of phase in going from 3#zj
to 3(n - 1)j coefficients. ]

D. Symmetry (even n case)

(a) Define the operation P[# which carries t,,~—1,,
and the operation P{* wh1ch carries k, ~—k,,

(15)

It is easily verified that the generating function G2
(t,#') is invariant under P{¥’. From Eq. (4), it follows
that the 125 coefficient is mvanant under P{¥ which
carries j, «—f).

(b) Define the operation P! =permutation (323
among the ¢, indices. Likewise P‘® among the
the %, indices. (16)

G2 (¢, ) is readily seen to be invariant under P{?,
This implies that the 12j coefficient is invariant under
P,

(c) Define the operation P{? that carries

tog = bpet g1
t, =t

be “p-1q-1

except

t1q_' —toe1y 9%F 1,

tn - too! (178.)

a7
and P{® that carries

Rpa = Bpararr R ™ Bpion (17a)
except

kDa_.kl q+l? k:)q—.k:’l q+l” (17b)

Then GY2(t, ') is invariant under P, The 12j coef-
ficient is left unchanged apart from a phase:

PP {124}= (- 1)%),,{12j}. (18)

In terms of the M&bius strip picture, the above three
operations correspond to the following:

P§ 9. yp—down symmetry of the Mébius strip:
two fold symmetry,

P® : left—right symmetry of the Mébius strip:
two fold symmetry,

P#: moving the “twist” between
p and p+ 1 vertices: n-fold symmetry

Thus the combined symmetry is 4n-fold (n >4). (19)

The fact that.the 65 and 9j coefficients in fact posses
larger symmetry than the basic 4n-fold symmetry dis-
cussed here might be attributed to the looser structure

of their corresponding Mobius networks. (We emphasize

the lines rather than the surface.) For n <3 (i.e., with
at most three vertical lines), it is possible to inter-
change the roles of horizontal and vertical lines, there-
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by resulting in enlarged symmetry. We claim that this
is no longer possible for a Mdbius network with four
(or more) vertical lines.

1. THE 15/ COEFFICIENT

A. Definition

Parallel to the discussion of the 12§ case, we take

{155}

Joo  Ju 2 Jss Jm (20)

’
=% My Moo Mg\ (Mo My My
", P 4 4 14

Jao Joo Jio Jao Ju Ja

x(m'm M, mgzz) 3 Mig m43 (mfm LM m64)
. L2 . .
Fiz Jo2 e Jaz  Jas Joa Faa Jos

x Jao Joo Jro (01 Ju ]21) (]12 J22 ]32)
0. 1) \Mgp Mgy Mgy

Myg Moy Myo) Mgy My My
><<]23 Jas .743) Jae jo4)’ (21)
Moy Mgy Myg) \Myy Myy Moy

where
ToaZiapr  Mp=Myy
(odd-n rule), p=0,1,...,4. (22)

The remarks following Eq. (3) for the 12j coefficient
apply here also with Eq. (22) replacing Eq. (3). The
Mébius strip picture for the 15j is shown in Fig. 2.
B. Generating function of the 15/ coefficient

As an obvious generalization from Eq. (4), we have

GU9(t, 1)= 3 N {15} T t:’rt’,:"’“ (23)
Piq b.q
where
4
N,= [n (J,+ DT+ 1)l/(n k,,! k',,z)}/z (24)
p=0 bua

with the &, ®’, J, J' defined as in Eq. (6) now for p,q
=0,1,...,4. As before, Eq. (23) is converted into the
following integral:

GUs(t, 1)
= [ dp () diss(n) exp (:é (D,+17;)), (25)

where D, and D) are defined as in (8) now for p

FIG. 2. Mdbius strip representation for the 15 coefficient.
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=0,1,...,4, f, having components (f,_;1,, £5, £y ,)
(mod 5), labeled by a set of triplet indices. Likewise
for £, and n,. All this is quite parallel to the 12;j case
except that the even-n complication (9) is absent here.
Furthermore, £, 71, satisfy Eq. (10).

After performing the 30-fold integration in (25), the
final answer reads:

G“s)(t, t')=(1—b1—bz"bs—b4)'2, (26)

where b, consists of polynomials of degree 2(i+1) in ¢
and ¥, namely

4
=2 tppd p-1p-2
0

[qu
4

b,= Zg [Zostoes pralpt p-z + potona par

defined in (14)],

Xtz pealpes pustipor plpapa T E 1 ),

P P+l P*l ’) P42 P*St’-l -2

b3 = 2 {( f 74 p+1 Pl

+ [t;’ﬁ(tﬂl wltp»z po].tp'»,z P38

+ tP*Z P+2tP*1 P*zt,#fl l’) tMS P&BtP’-Z -1
Xt p-1p-2 ? lP t']}

4= ;2 tpp(tpa p+1tp+2 p2 tpn »2 pe2 »1)

4
Xty pualprpa— Eo (Fpp + (&) purtpurp +E—1)]. 27

C. Consistency check

The statement made under Sec. IIC for the 12j case
is valid also for the 155 case.

D. Symmetry (odd-n case)

(a) Define the operation P;*’ which carries t,,~— #,;
correspondingly for P“" ky,— K, It is obvious
that G (¢, ¢) is invariant under (28) This
implies that the 15j coefficient is invariant under
Pl
(28)

(b) Define the operation P'¥ =permutation ({}233)
on ¢, (recall t; =t,,). Correspondingly for P»
on k,q We have G9(¢, 1) invariant under P¢’,

thus the 15j coefficient is invariant under P?,
(29)
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(c) Define P{*:
bye™ by grs  Bogtpr g (mod 5) (30)
and P{®:
k’d_. kb,«rl q+l? kﬁ’q—. kpu q+l® (31)

Since G*9(¢, #) is invariant under (30), we have the in-
variance of {15j} under (31). The remark following Eq.
(18) holds here for n=>5.

1V. CONCLUDING REMARKS

What we have done is to demonstrate by explicit calcu-
lations that the study of the properties of higher-order
3nj angular momentum recoupling coefficients can be
carried out in principle for all n. The algebraic com-
plexities, though increasing rapidly with n, turn out still
to be controlable. Extraction of the explicit expansion
forms for the 3nj coefficients are in principle possible
from the generating functions.

The 3nj coefficients (n > 4) are seen to possess a 4n-
fold symmetry. Visualization of some of the structural
properties of 3nj coefficients are greatly enhanced with
the aid of a geometric Mdbius network representation.

Note added in proof: For graphical method for angular
momentum, see also E. El Baz and B. Castel, Graphi-
cal Methods of Spin Algebras (Dekker, New York, )
1972).

*Based in part on a dissertation submitted by C.S. Huang in
partial fulfillment of the requirements for the Ph.D. degree
at the University of Michigan, 1973 (unpublished).

IFor an excellent introduction to and collection of the classics,
see L.C. Biedenharn and H. Van Dam, Eds., Quantum Theory
of Angular Momentum (Academic, New York, 1968),

’E.P. Wigner, famous unpublished 1940 manuscript, reprint-
ed in Ref, 1.

33, Schwinger, famous unpublished 1952 AEC Report, reprint-
ed in Ref, 1.,

4y, Bargmann, Rev. Mod. Phys. 34, 829 (1962).

5A.C.T. Wu, J, Math, Phys, 13, 84 (1972).

8The algebraic details are contained in C.S. Huang, Ph. D.
thesis University of Michigan, 1973 (unpublished).
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8T, Regge, Nuovo Cimento 11, 116 (1959).

SH.A. Jahn and J. Hope, Phys. Rev. 93, 318 (1954).
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for reminding them of this reference.
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By adjoining a set of adequate potentials to the classical electromagnetic potential, it is possible to
formulate a variational principle that yields the equations of the micromorphic EM theory proposed

" by Eringen and Kafadar [J. Math. Phys. 11, 1984 (1970)]. The energy-momentum law for
-micromorphic EM fields is obtained and constitutive equations are derived for relativistic

EM-elastic fields.

. INTRODUCTION

Recently Eringen and Kafadar® proposed a set of basic
laws for relativistic microelectromagnetism and, as a
particular case, introduced the field equations of the
microelectromagnetic theory of grade I. This theory
was intended for the prediction of physical phenomena
involving ferromagnetism, micromagnetism (in the
sense of Brown?), electrets,® microwave propagations,
and other related microelectromechanical effects for
which the classical continuum hypothesis is violated.
This situation arises when the length scale associated
with the exciting agents become comparable to the
average dimension of “grains” (microelements) in bodies
and/or the average distance between grains. Then it is
believed that the classical field theories do not contain
the necessary mechanism to take into account the local
degrees of freedom. The theory of microelectromagne -
tism is so constructed as to provide the necessary de-
scription, still within the frame of continuum formalism
(i.e., with “nice” differential equations), the new de-
grees of freedom being accounted for by new field
equations referred to as “moment” equations. In fact,
Eringen* has shown that: (i) The basic balance laws of
phenomenological micromagnetism such as given by,
among others, Brown,? Tiersten,® and Maugin and
Eringen, ® could be derived from microelectromagnetism
theory by assuming certain approximations (quasimagne -
tostatics in a #igid body); (ii) in different approxima-
tions, the theory contains London’s phenomenological
equations of superconductivity (there, the new degree
of freedom is represented via a local “superconduc-
tivity” field ).

By analogy with the mechanical theory developed ear-~
lier by Eringen and his co-workers, "% this theory may
preferably be referred to as micromorphic EM theory.
Indeed Eringen and Kafadar constructed their theory in
the frame of the four-dimensional formalism of
Minkowskian space—time, and introduced averages of
Maxwell’s equations in matter over well-defined volumes
or hypersurfaces in a manner very similar to that used
for constructing the mechanical theory of micromorphic
media.® Though in the latter the concepts of new kinds
of forces and couples and of energy arose quite naturally
since it was a mechanical theory, the equivalent result
for the energy equation in the micromorphic EM theory
was not obtained. As a result of this and the lack of
thermodynamical considerations, the theory lacked con-
stitutive equations. This fact is not due to indifference
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or oversimplification; rather, these authors postponed
the solution of a problem which involves difficulties in-
herent to all theories dealing with electromagnetism in
matter such as the difficult problem of defining the pon
deromotive force and couple, and the energy density
and/or the electromagnetic stress—energy —momentum
tensor. This, of course, requires in general the con-
sideration of interactions of the electromagnetic fields
with a deformable medium. The constructton of a com-
plete micromorphic EM theory with mechanical interac-
tions based on the statement of global or local balance
laws (direct approach) necessitates the introduction of

a model for the above-cited interactions. This difficulty
may be bypassed if, instead of this general approach,
one is satisfied with the study of nondissipative phenom-
ena and thus, considers a variational formulation. Such
a formulation is in general possible and yields results

in complete agreement with those obtained from a direct
approach. For instance, the direct approach of Eringen
and Suhubi’ and the variational one of Maugin® lead to
comparable results for the theory of nondissipative
micromorphic media. The same holds true for the
treatments of the classical continuum theory for the
interactions of EM fields with deformable bodies pro-
vided by Grot and Eringen'® on the one hand and by
Grot?! on the other. We must, however, note that the
identification of the results was possible in the two
different approaches because some expressions result-
ing from the direct approach were known. For the same
reason, it has been possible to grant a physical signifi-
cance to quantities resulting from the variational formu-
lation. The situation is somewhat more annoying for the
micromorphic EM theory, for no direct approach is
known so far that includes mechanical interactions. It

is therefore along this blind alley that we try to con-
struct a simple theory for the interactions of micro-
morphic electromagnetic fields with deformable bodies,
by using a variational principle as starting point and
invariance principles as the main tools.

In all rationality, the deformable body considered
should be micromorphic of grade I in the mechanical
sense® too. This would, however, result in cumbersome
algebra. Thus, for the sake of simplicity, we shall
assume that the material in question has a very simple
mechanical behavior, namely that it is hyperelastic,
i.e., nonlinear elastic with constitutive equations deriv-
able from a potential, the relativistic strain—energy
function.

1494
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In this paper we deduce from the variational principle
(i) the field equations of micromorphic EM theory of
grade I, (ii) the equations of conservation of energy-
momentum and of moment of energy—momentum —this
follows from the application of Noether’s theorem —(iii)
constitutive equations for all constitutive variables. At
some point, we shall emphasize the analogies with the
mechanical micromorphic theory.

)|

ill. BACKGROUND

The background of the subsequent developments is the
space—time continuum of Minkowski, M*, equipped with
the Lorentz metric of signature (+, +, +, =). The Greek
subscripts and superscripts assume the values 1, 2, 3,
4. Small and capital Latin indices assume the values
1, 2, and 3. x* and X¥, K=1, 2, 3, denote, respective-
ly, a curvilinear system of coordinates in M* and the
Lagrangian coordinates of the reference state in Fucli-
dean space E3. In an inertial frame, the square of the
element of arc in M* is given by

ds®=dz,dz®*, (2%, 2% 2%, 2 =(x,y,z2,ict), i=(-1)'/2,
(2.1)

where z® are rectangular coordinates, f is the time,
and c is the velocity of light in vacuum. Referred to
curvilinear coordinates x*, we have

ds® =g, gdx®dx®, (2.2)

where g, is the metric tensor which is normal
hyperbolic.

Partial and covariant differentiation with respect to
x* are denoted, respectively, by commas and semi-
colons or symbols V,. Indices are raised and lowered
by the metric tensor g,, and its reciprocal g*5, The
summation convention is used throughout the paper.
Parentheses around a set of indices denote symmetriza-
tion and brackets denote alternation. €.z, is the permu-
tation symbol.

We refer the reader to Grot and Eringen, '° Kafadar
and Eringen, ¥ and Maugin and Eringen'® for a complete
description of kinematics of relativistic continua. The
elements of kinematics sufficient for the present exposé
are the following ones: With 7 the proper time of the
particle (X¥) initially at the coordinates X* in E?, the
motion of (X¥) along its worldline (g,x) in M* is entirely
described by the set of relations of class C?

£ =x*(X%, 7). (2.3)
Conversely, we have

XE=X*(x*), T=7(x%). (2.4)
From (2.3) we compute

o _ ox* ., 9x®

X = gxE o U= (2.5)
with

0
gast®uP +c2=0, a—TEu“Va, (2.6)

and define the operator of projection P%, onto the hyper-
plane M$ orthogonal to (€yx) at x®, by the relation

Pey=05 +(1/c*uus, 2.7
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with

P% P, =P%, P'%u=0.
Finally the direct and inverse deformation gradients of
the motion are given by the definitions

XK
X% =P% xﬂ,x: X

PRy 2.8)

A material body (B) C E® [(By) in the reference config-
uration] of boundary (2.B) sweeps out the tube (®)cM*
as time goes on. (3®8), (B)=(B) -(o8), (B), M*-B)
denote, respectively, the boundary of (#), the open set
that corresponds to (8), the closure of (®), and the
complement of (#) in M*, A discontinuity three-dimen-
sional hypersurface (I') of unit oriented normal »n, may
split () into two parts. The familiar symbolism [ - - ]
denotes the jump across (I') or, sometimes, across
(2#8). The outward unit normal of (34#8) is denoted by
N,.

Here we briefly recall the salient results of Kafadar
and Eringen.! The field equations for the micromorphic
EM theory of grade I read

G*,=(1/c)J% in (& -T), [6**]ns=(1/c)K* on (),
(2.9)

G*  +G* = € =(1/¢)J** in (@ -T);

[G*®]ns=(1/c)K** on (T),
with the definitions

(2.10)

G*#=electric displacement tensor,
G*#=first moment of the electric displacement
tensor,
J%=volume current 4-vector,

J **=first moment of the volume current,

@**=average local electric displacement,
K*=surface current 4-vector,
K**=first moment of the surface current.

The first set of Maxwell’s equations (2.9) is thus
supplemented by the new “moment” equations (2.10). If
the symbol {--.),, indicates the average over a mani-
fold of dimension #n, then the moments G*** and J** and
the field $°* are defined as?

G*=(G** N o), J*= (TN, €= (GM),

where £ is the 4-vector that joins the “center” of the
manifold element to any point of this manifold element.
The second set of micromorphic field equations is

fo8 TaB __
Fe=0, 5%5=0, (2.11)
FaB)«;B_‘l_Fax_sax:O’

where we have used the definition
F = dual(F),

Thus, in the index notation (2.11) is equivalent to

«BY6 — a 876 -
€ F'NS;B—O! € 576;3—0’

eaBVO(FW -3:76) +€°IM°F.,58;X=0,

in which
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F,s=magnetic flux density tensor,

F s =average local magnetic flux density tensor,

F, f=first moment of the magnetic flux density
tensor,

with
Fos=(Fap a3y Fult=(Furta-

Here again (2.11), ; are the micromorphic supplements
of the Maxwell’s equations (2.11),.

Equations (2.9),, (2.10),, and (2.11) are supplemented
by the conservation of charge laws

J% =0, J*%, +J' =g 2=0. (2.12)
One can show that the following equations hold:
gluhl 0 =(1/C)(Ju'— J[““;A’)’
(2.13)

g“‘“z - (1/0)J(ux), gulm - (1/0).9'7‘,
of which the latter provides a definition for #*,

The structure of Egs. (2.11) shows that we can in-
troduce three sets of potentials to satisfy these equations
identically. This is achieved by setting™

Fuy=293,4,, F,=2V,10
(2.14)
F

[

where A, and ¥, are two 4-potentials of which the
former is the potential of classical EM theory, and A,
is a second-order tensor potential. In a Euclidean frame
of reference (inertial frame at which the 3-velocity v
=0), these potentials assume the decompositions

Au =(Ak! l¢), ?Ix=( Ay “p)a

_ Akl iAk(‘!)
Auh_<m(4)k -A )

We note from the relations (2.14) that the potential
introduced are not entirely independent. As a conse-
quence, we certainly need not introduce all these poten-
tials in a variational formulation; in fact, hereafter we
shall use a set of potentials different from those intro-
duced above and all independent.

,f=2va,§ +26?u(Al1 - 2[)‘1))

(2.15)

11l. THE VARIATIONAL PRINCIPLE
A. The Lagrangian density

With the open (%) of M* and (M* - ), we associate
the following actions

/l=-fo Td'y + J LR o F™qy
(Q)p ($)4 B s

(3.1)
Z 1 Ba 14
= . iF,, F**d*v
(M4-$)4 aB
Thus, in general, the Lagrangian density is
L==p¥ +%FQ,BF”“, (3.2)

where p is the invariant relativistic density of matter,
¥ is called the relativistic specific internal energy, and
+F .3 F® represents the density of the free magnetic
field. In the absence of matter, ¥ vanishes. Therefore
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¥ represents the interactions of matter with matter and
matter with electromagnetic fields. The crucial point
here is the selection of the arguments on which ¥ de-
pends. By analogy with the mechanical micromorphic
theory® and the theory of couple-stresses, '* and follow-
ing the guide provided by Mie’s theory of electrodynam-
ics'®' (that we generalize in a certain sense), we pos~
tulate that ¥ depends on the set of basic arguments con-
stituted by the motion x®, the electromagnetic potential
A,, and a supplementary set of four 4-potentials A%),
(¢)=1, 2, 3, 4. Here, the number (%) has no tensorial
character. ® For a theory of hyperelastic media and for
micromorphism of first order, ¥ will also depend on an
adequate set of arguments derived from the basic argu-
ments, namely their first gradients. For instance, we
may choose the following functional dependence:

‘I'='I’(xa!xa,K!Aa,Aa;B)A(i),A(fz);B)' (3'3)

However, to restrict this form, we use three principles
commonly accepted nowadays: (i) ¥ must be Lorentz
invariant; (ii) the quantities which describe the deforma-
tion field must reduce to their classical analogues in a
rest frame; (iii) we require ¥ to be gauge invariant, for
we are dealing with electromagnetism. The last require-
ment overcomes the difficulty appearing in Mie’s
theory.'” The requirement (ii) indicates that we must
consider x% instead of x* ;. The requirement (iii) which
is satisfied if ¥ is invariant under the following group

of gauge transformations (®: arbitrary scalar function),

0, a,+V,d, for every 4-potential a,,,

rules out the explicit dependence on A, and A*Y’.
Furthermore ¥ can depend on 4, and A %), only
through the combinations A 4,5, and AY).;,. We shall set

Fog=2Y 4 Ag, F'85=2V,,4%,. (3.4)

It follows that the two following equations are identically
satisfied:

GaBNF,B;B=0, emﬂrbg(%m:o_ (3.5)

With the requirement (i), the invariance of ¥ under
space—time translations rules out the explicit depen-
dence on x*, Finally, as it has been shown that using x%
or X* , was equivalent, *° we consider a relativistic
internal energy of the form

¥ =U(XE , Fop §50)- (3.6)

In absence of electromagnetic micromorphism, i.e.,
for A) =0, for every (£), we recognize the function
used by Grot!! and Maugin'® in special and general
relativity.

It remains to study the invariance of (3. 6) under the
rotation members of the Lorentz group. An infinitesimal
Lorentz transformation in M* is described by the

mapping
2% =(6% +eQ%)x® +d°, (3.7

where ¢, d*, and Q*° are, respectively, an infinitesi-
mally small constant, an infinitesimal constant 4-vector,
and a second-order skew-symmetric constant tensor.
For d* =0, we get from Eq. (3.7)

6 *=eQ%x", OM*E=26Q'sM''®, (3.8)
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where 0 indicates the variation resulting from such a
transformation. Here (3. 8), gives the infinitesimal
variation of a second order skew-symmetric tensor M*#
under infinitesimal 4-rotations in M*. The invariance
of ¥ is thus written

‘I’(Xx,a!FaB’ g(fx)ﬁ) =‘I;(Xx,a +6XK,a,FaB +6Fu87 5(;)8 +65(ft)ﬂ)'

(3.9)

Using the relations (3.7) in the right-hand-side of Eq.
(3. 9) and noting that the left-hand side does not depend
on @8, we have

o¥
g =0
ie.,
ov o ov .
XE 17 X¥ 5y +2 EYascl aFs) +2(Z‘>)as=_(m_Tym g4, =0.

(3.10)
B. The variational principle

According to the general scheme for a variational
principle in continuum physics® and following the tradi-
tion established by Lagrange and Piola, we introduce
indeterminate multipliers for each term that can arise
in varying the basic arguments in ¥ (i.e., x*, A,, A‘})
in (@), on (3#) and on (I'). We therefore express the
proposed variational principle as

6A+8A+6W=0, (3.11)
where
W= o f“éxad“v+f T*6x, d°s +f°
,/(é -I‘)p (a®@-r) (®-r)
X(1/¢)J*8A d*v
| womesaLas - /o)
r ()
X(Z}K“""ﬁA(,m)dssr
(18]
(o g 4
+ﬁ'%_r)((ze>)-’ M(;)a)d v. (3.12)

Here we have considered a discontinuity hypersurface
(T') in (%8). The physical significance granted to the
multipliers is the following:

f®=applied specific body-force 4-vector,
T* =applied surface-traction 4-vector,
J*=volume 4-current,
K*=surface 4-current prescribed on (T'),
F O =yolume 4-microcurrent relative to the field
F oo
K'“® =surface 4-microcurrent relative to the field
F e
f® and T“ are not due to electromagnetic causes, e.g.,
f% and T* may stand for gravity and a mechanical stress
vector due to pressure respectively. For the process to
be nondissipative, J® must be due to convection currents
only. That is, in a rest frame, the Joule term J-E is
zero (for example, this is the case when the conduction
current is a homogeneous function of degree one in E).
A similar condition must hold for #'¢'%; however, we
must admit that the physical significance of sucha re-
quirement is not clear. The notation 8 used in Eq.
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(3.12) is explained below.
C. The variation

We assume that the variation (3.11) is to be carried

“out under the constraints (3.5) which can be written in

integral form using the language of exterior calculus®
as

o 8 __
f(é,z)p,,ﬂdx Ady® = f(aé,z)A,,dx“,

f(é,z)ﬂf“nfsdx"/\ dx®= J.(aSz)A‘g’ dx®,

for all A'®’, (&) fixed, where ($?) is an arbitrary two-
dimensional hypersurface whose boundary is (35%). d
indicates the one-form basis. Equations (3.13) express
that F,, and '} are closed forms. Following Weiss®
and Grot,!! it is not difficult to show that Egs. (3.13)
yield the following variations of the fields:

OF 45 =2(0A5),0) = 2Fy 4(0%") ),

(3.13)

) | (3.14)
53 (fx)e= 2(5‘4(&) H 23’(5()5(6967);,, 1
where the Weiss-gauge-invariant variation® 84, (simi-
larly for 6A‘})) has been defined by

8A,=0A4-A,.,0x".

The variation (3.11) is thus carried out by varying x*
and F,,and §‘}}, the latters being according to Egs.
(3.14). Finally, in order to preserve the identity of a
material particle (X¥), the following obvious constraint
is imposed:

6X¥ =0 in (4B).

The fields A, and A') are assumed to be of class C?
throughout (#8). The following necessary intermediate
variations have been computed elsewhere-!3:

OX¥ , == X¥ (6xF),q,

sz—pPaB(GxB);a, (3.15)
G(d“v)zég(éxﬂ)m.
Furthermore, we define the following quantities:
0¥
Ba = _ K, o
= anK'BX ’ (316)
Tom.n==F4F® +iF, F* g (3.17)
[= TaB in (Iu‘l - §)]’
ov
af_ pal
G*=F +p6Fa3’ (3.18)
v
(?)BEPBS,(;)B’ (3.19)

T**=(1/c®)p¥uu’ ~t** = F*7G P +1F, F" g**

Oar 8
-7 Cirr -

13 (3.20)

They represent, respectively, the relativistic stress
tensor, the electromagnetic stress-—energy—momentum
tensor in vacuum, the electric displacement tensor, the
microelectric displacement tensor, and the total
stress-—energy—momentum tensor of the material
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medium in {(®).

By using (3.14)—(3.16), the variation 54+ 64 can be
expressed as

574"”57—4“: (‘é){?‘aﬁ(éxa);ﬂ +G“£(5Aa);3
+E ¢ &B(gA(;));B}dzzv
€y

+ f(ﬂax_@){T&ﬁ..v)(axa);s +F“B(8Aa);5}d4”-

(3.21)

Integrating (3.21) by parts and using the generalized
Stokes’ theorem? [in order to take account of the pres-
ence of (I'}], we obtain the following expression for the
variational principle (3.11):

1 .
f(“”? '”3{(~ T+l ")0% = (G"“ie —;J“)aAa

1 .
- oB - &) ,
g#m BTy m) 0A'Y d*v

+j(u4_§)(“ Tlem.v138 0% ~ F*'g 8A,)d*v

- f (ﬁ_r){([wﬂ] Ny~ T%) 6x, +[G**]N, 84,
+ % € BN, 54 ‘f,’}das

+f‘ri[T°‘ﬂ]nB b3, + ([G“B]nﬂ - %K"‘) A,

+Z'_1\ (DE @$* Ing - %Ku')a) SA(fi}dssr =0.
(3.22)
D. Field equations
1. Electromagnetic field equations

We posit Eq. (3.22) to be valid for any variations 5Aa
and 64Y) and for any region in (&) and any hypersurface
(28) and (I'}). Thus we have

G*,=(1/c)® in (# -T),
[6**IN;=0 on (o ~-T),

Fo8,=0 in (M*~3), (3.23)
(628} =(1/c)K® on (T),
and
6 ,=(1/0)F% in (@-T),
[cf]N, =0 on (28- ), (3.24)

[6gfIng=(1/c)K & on (T),

for every (£)=1, 2, 3, 4. Equations (3. 23) are the usual
Maxwell’s equations in matter and vacuum. It remains
to show that we can deduce from Eqgs. (3. 24) the
“moment” equations which supplement Egs. (3.23) in
micromorphic EM theory. This is dealt with in Sec. 4,

2. Dynamical field equations

We now apply Noether’s theorem for the group of
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infinitesimal Lorentz transformations (3. 7) by selecting

the special variations
§x*=d* and 6x%=¢€Q*%x,. (3. 25)

For any region in (%) and any hypersurface (88) and (I,
(3. 25), yields the field equations which express the con-
servation of momentum and energy

T8, =pf* in(#-T),
T?eﬂm,v) ;,3:0 in (M‘!"’"@),
[T**]N, =T* on (3B~ T),
[T®]n; =0 on (I).

Considering (3. 25), for any skew-symmetric Q*%,
constant throughout (%), and taking account of (3. 26),,
we obtain®*

T8 =0 in ().

(3.26)

(3.27)

By construction, this is also true in (M*-®), cf. Eq.
(3.17). Upon using Eqgs. (3. 16) through (3.20), it is
shown that Eq. (3. 2%7) is nothing but Eq. % (3. 10) (p+0).

We must adjoin Eg. (3. 5) and appropriate equations
for the conservation of charge. Equations, (3. 26)—
(3.27) are supplemented with the well-known continuity
equations

(pu®),, =0 in @~ I),
[pu®]n, =0 on(I). (3.28)

We have thus obtained the full set of field equations
that govern the behavior of nondissipative elastic
matevials which are micromorphic of grade I from the
electromagnetic point of view.

IV. THEORY OF ERINGEN AND KAFADAR

In this section we transform the sets of equations
(3. 24) and (3. 5) in order to arrive at the formulation
given by Eringen and Kafadar (Ref. 1, Sec. 5). For
instance, consider Eq. (3.24), multiply each member by
A and sum over (£). After integration by parts and
addition of the vanishing quantity G*” — G*" to the left-
hand side, we obtain

G“B’;B+G“’~@“7=(I/C)J“7, (4‘ 1)
in which we have set
G“B"EE@(?‘)BA(“", G = — GBa?, (4.2)
)
Jor EE m?) A( !h', (4. 3)
(83
(4. 4)

— 8 A(L)
972G+ T S AV,

The skew-symmetric and symmetric parts of Eq.
(4. 1) are then written

Gle l;%hl +Gor - @lar! :(I/C)Jl‘"],

'g(ur):_(l/c)J(ar)_ (4' 5)

Taking the divergence of Eq. (4. 5), with respect to
x? yields on account of Eq. (3. 23),

g[on;.l’ — 1/0 (Ja - J[“":]_y),
which is Eq. {2.13),.

(4.6)
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If we assume that each microcurrent 4-vector satis-
fies the usual law of conservation of charge,

y(“?a:()) (£)=1a2;3141 (4-7)

and multiply this equation by A}, and sum over (¢), we
‘obtain

Jor  +J7 -L7=0, (4. 8)
where

L=l ART A o (4.9)
With Egs. (4. 1) and (4. 8), this gives

gre =—(1/c)g™. (4.10)

A transformation similar to that performed on Eq.
(3. 24), can be achieved for Eq. (3. 5),, leading to

FaB 4 For _grer=0, (4.11)
where we have defined

FaBl _SN g aB AU A__F A
F =(Z€))-9'“)A » Fog==F

Ba

.§-m=}?~ax+(2”§-(emeA(?) " (4.12)

From (4. 11) it follows that
Fr,=0. (4.13)

Finally, since the A}, are assumed to be of class C*
throughout (%), Egs. (3.24),_, can be written in the
forms

[G**]N,=0 on (o8-T),
[G**]n, =(1/c)K** on (), (4.14)
with the definition

X — a A(HN
K _(Zt) K(E)A .

(4. 15)

All equations obtained in the present section are in
agreement with those of Eringen and Kafadar. More-
over, constitutive equations have been given for all
fields deduced from the variational formulation. We
remark that, in absence of electromagnetic micromor-
phism, i.e., for A'Y=0, (¢§)=1,2, 3,4, everywhere in
(@), the tensor fields *#, ¢, and $*® reduce to the
classical Maxwellian fields G*®, J*, and F while the
“moment” fields G**, J*, and F*® vanish identically,
thus yielding the theory given by Grot. !*

V. SPECIAL CASE

As pointed out in Footnote 18, we may consider that
only one new 4-potential is needed to describe the
micromorphism of the electromagnetic field. Let this be
a,. And further we take it to be of constant unit ampli-
tude, i.e., g*® a, a,=1 throughout (#). This means
that we are interested only in the variations of direction
of the 4-vector a,. By analogy with the mechanical
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theories of micropolar media where the tensor fields
describing the micromotion are of constant magnitude, 2°
we can say that we are now dealing with the micropolar
theory of electromagnetism. All sums disappear in the
definitions of the “moment” fields and the total stress—
energy—momentum tensor defined by (3.20) may be
written as

T8 — (1/02)p \I,uauB_ tBa - Far GYB - Fa'); GrBh

+5F, F gt (5.1)
thus yielding an explicit form of the momentum and
energy densities of the micropolar electromagnetic
fields.
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Lattice Green’s function for the body-centered cubic lattice at arbitrary points outside and inside the
band is evaluated by the method of analytic continuation using Mellin—Barnes type integral.

1. INTRODUCTION

Recently a method of the analytic continuation using
Mellin-Barnes type integral was developed in the calcu-
lation of the lattice Green’s functions. Body-centered
cubic lattice! and simple cubic lattice? at the origin,
square, and rectangular lattices,’ simple cubic lattice,
and tetragonal lattice at arbitrary points, * were studied
and calculated by this method. Similar problems were
studied also by the method of complete elliptic
integrals. 57

In this paper, the lattice Green’s function of the body-
centered cubic lattice at arbitrary points

1 ([ (" coslx cosmy cosnz dxvdydz
Ka;l,m,n)==% -
T o @~ 1€ - CcO8X COSY COSZ

(1)

is considered. Here r=(/, m,n) and k=(x, y, 2) denote
the lattice point, and momentum, I(a; I, m, n) do not
vanish when [/, m, n are all even or all odd. The inside
and the outside the band are specified by lai<1and |al

Ia; 21, 2m, 2n)

>1, respectively. Earlier works on (1) were reviewed

in Ref. 8. Recently Joyce discussed I(a;l, m,n) and ex-
pressed’ I(a;0, 2m, 2n) as a product of ,F, functions and
expressed® 1(1;1, m,n) for 0 <{,m,n'<8 in terms of the

complete elliptic integrals,

In Secs. 2, 3, and 4 of the present paper, I(a; I, m,n)
is calculated by the method of the Mellin—Barnes inte-
gral. The value inside the band is obtained by the analy-
tic continuation from that outside the band. Results are
expressed in terms of generalized hypergeometric
functions.

‘2. OUTSIDE THE BAND

Now we express the integral (1) in terms of the gener-

-alized hypergeometric function ,F,. First consider the

case a>1, and l, m, n are all even. We agsume I, m,n
> 0 without loss of generality and we put - 2I, m = 2m,
n-2n. Expanding the integrand in powers of 1/a, the
term-by-term integration gives

o (T T r ?»
=1 S cos2lx cos’x dxj cos2my cos?y dy s cos2nz cos’z dz (t—i)
0

a0 )o 0

reeM+1)

T TMF I+ DI M-I+ DIM Fm+ DVI(M—m + DI(M +n + DI —n+ 1) 27

M+1, M+1, M+1, M+% M+3, M+%, 1;a?
XqFg

M+1+1, M=1+1, M+m+1, M=m+1, M+n+1, M-n+1

where M =max(l, m, n). Equation (3) which is reduced
to ¢F; is a closed form outside the band.

For I=m=n=0, Eq. (3) is reduced to a known form
I(a;0,0,0)=a"3Fy(3 3, 35 1, 1; a”9).

For the case [ =0, ,F; in (3) reduced to ,F,. With use

1
()
(3)
mAt,m+ 58] [mtimes; e
=Ca*™,Fy o'y )
m+n+1 -n+1 /
3"
where
[(2m)1]?

of a formula given in Eq. (3.1) in Ref. 3, ,F; thus re-
duced is transformed into F, which can be factored as
a product of ;F,. We agsume m = n,

I(a; 0, 2m, 2n)

1 1 .
omy M TE mEE, mtz, mtl;a?
=Ca 1F3 ,

2m+1, m+n+l, m-=-n+1
=Ca ™ 'Fym+3% m+3m+n+1l,

m=n+1; 1/4d®, 1/4a?),

1500
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H

C= B on )2 + m) 1m — )1

kz= %_ %(l—a'z)l/z .

, Equation (3') agrees with the result by Joyce.’

For the case where I, m,n are all odd, we have in a
similar way, :

‘Copyright © 1974 American Institute of Physics 1600
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I8(2M +2) 1

Ia; 21+1, 2m +1, 2n+1)

= O T(M + i+ 2)TM - 1+ DIM +m + 2) (M = m + DI\M +n + 2)I(M - n+ 1) ¢

M+1, M+1, M+1, M+%, M+3, M+3, 1; a2

XqFg

M+1+2, M=1+1, M+m+2, M=m+1, M+n+2, M-n+1

where M= max(l, m, n).

3. INSIDE THE BAND

Mellin--Barnes integral representation of (3) is given
by
73/2 1

.

- a2M+1

E+M+H(E+M+1)

«f+iw .
x S_,,_(,, TE+MAI+)T(E+M -1+ )TE+M+m+1)

I'(t+ 1)I(= ) (- 1/a%}
r(t+M m+ )TE+M+n+ DT+ M- n+1)

(5)

where & is a positive infinitesimal and |arg(- 1/a%)| <.
In considering the case inside the band, a is understood
to be a=|ale™*, hence -1/a*=(1/|a?|) exp(- im).

The path in Eq. (4) is shifted to the left, i.e., put
s=t+M+1, then we have

-8+fw

1
-3/za_

I==m 2mi }

1-8-4

(s = H)I¥S)I(1 - s)T(s)(— 1/a°)°
(s +)I'(s = NI'(s + m)I'(s = m)I'(s +n)1"(s n7

, )
The poles of I'(s - 3) are triple poles at s=3-¢, ¢
=0,1,2, ++- . The quadruple poles of r“(s) at s=-—gq,
g=0,1,2,..., are partly canceled by the poles of the

rds-4) © o 0 o o o o 0o 0 o

rYs)y o o o o o o o o0 O o

denominator, and the resulting poles in the integrand
are

q=0, 1, “oe
q=0,1,2, -,

(1) s=-gq, , min(l, m,n) - 1, simple pole,

(2)s=z-9, triple pole.

These poles are shown in Fig. 1. The contribution of
these poles is denoted by Iy(a; 21, 2m, 2xn) (i=1, 2,).

The calculation of the residues of the simple poles is
straightforward and the result is

I,(a; 21, 2m, 2n) = (= )"*"™"8Imn a

1+1, 1 l 1+m 1l-m, 1+n, 1-n;
xst[l 1 3
] 2 2s

4. INSIDE THE BAND—CONTINUED

In this section we consider the contribution of the
triple poles, i.e., I(a; 2I,2m, 2n). The residue of the
integrand (6) at s= - ¢ is given by

az]_ (M

-8 “a’ 37

(s — 3)T%(s)(n/sinsm)(~ 1/a?)*
X TEF DT - DI(s +m)T(s - m)T(s +m)I(s = n)],=1 o

d2
E—z[(s—z"‘q)3

(8)
=aqd/2g (_‘21;12)_ [h((s -3+ q)ﬂ)g(s)].,-uz-w (9)

where

|
|
|
|
|
ro(1-9) ooooooooo:ooo
|
Fes-4) x x x x X x X x X X X X X X X X X X X X
|
F{s-m x x x X X X X X X X X |x x x x X X X ;
|
M {S-n) X x X X X X X X X X X X x X X |
|
r {(Ss+n) X X X X X X i
|
r {s+m) x x X X |
|
r (s+y¢) x x 1
IR SR | | S R SEN R S M| Ililllllg;ll#l
-4 -m -n -2 -l 12 3 n m 2 M+l
simple pole o 0O o ©° lo o o
|
|

triple pole © 0o © O O O ©O © ©O ©

o

'FIG. 1. The poles of the integrand of Eq. (6). Abscissa denotes Re s. O pole of each factor in the denominator, x pole of each
factor in the nominator. The last two lines below the horizontal line indicate resulting poles in the integrand.
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T(1-1=-8)F(1+1=8)I'(1=m - s)[(1 + m —s)T(1 -~ n - s)I(1 +n - s)sin®sn(- 1/a%)* (10)
gls)= TG- 90 -5)

h(s) = (ns/sinns)’.

—

Taking +Y (bt R)+ e+ Y (b5 +E) - Y (ayHR) - ' (ay + B)
Hmh(s) =1, — o=y (ag+h)]. (16)
Then the contribution of residues of triple poles is given
1im 28) _ o by
$=0 dS ~
I(a; 21, 2m, 2n)= (= )"*"™"¢F5 +i(sGs — ¢H;5 — ¢F5)]
lim Eh(s) _ 7
31"0 ds x[_-ls;+ly21_m9%+m,%"ny%+n; f]
1 1’ 2y 25 2 (17)

into account, we have

rhs of (9)= - 7" /2a[(~ 1)9/27%][n?g(s) + & "(5)]su1 /2-0 '
where (11) [, s s s s ,az]

£S)=g(o) -1 =1=8) = p(1+1=5) = Y1 -m = 5)

where the arguments

of ¢F5, ¢Gs, ¢Hs, and ¢Fs are all same.
-p(1+m=s)=p(l=n-s) The final result is given by

I(a; 21, 2m, 2n) = (- 1)"*™"8Imn a F
— $(1+n— ) +27 cotsm +log(- 1/a?) + 3P(3 - 5)

(12) [1+z 1-1,1+m,1—-m,1+n,1-n; 2]
+3¢(1_S)]’ 1’ 1) 2 2’ %
T»me = . - -

() =g(Hl= d(1=1= )= Y1+1=5)=p(1=m ) HEDTLE G I
~d1+m=-8)-Pplen-8)=P(1 +n=35) x[f-i, 2;‘1%5;"1, ztm,3-n,3+n; a]'
+ 27 cotsm+ log(= 1/a®) + 3(3 - s) + 3Y(1 - 8)]? (18)
+P(A-1-9)+ P (A +1=5)+P(1-m=5) |
+Y(L+mos)+P'(l=n-s)+§(1+n=s) arl:;:lmllar way we have for the case where I, m, n
~2n%cscism -3y (3 -s)=-3p’'(1-9)]}. (13)

I(@; 21+1, 2m +1, 2n+1)
=~ (= 1)"™"Fy [1+l -1, l1~l~%m, -m, 1+n, —n; az]

,

Here we define three functions f,, 2Gq, and H,as

F a1:a2:aaya4;as;a5’z
648

by, b, bs, by, bs + (=)™ (20 + 1)(2m + 1)(2n + 1)afeFs +i(;G5 ~ ¢Hs— 6Fs)]

_1 > (@) (@5) 2(05) (@4) 1 5) () » [1 -1,3 +l, =mz S4+m,3-n, 3+n; az]

R A ARCAR AR AKAN (19)

X 2 [P(1+ )+ (b + )+ -

2
We obtain the leading term for a— 0 from the term of
+P(bs + k) = P(a, + &) k=0. For the even case we have
(14). I(a; 21, 2m, 2n)
= (- 1)"™"[8lmna+ (1/7)(- 6y - 61l0g2 - Yz - 1)

c. [ 22 @, a4, 05, a4 2 =P +1) =P —m) = P& +m) = (5 ~n) = $(z +n)
s bl: ba’ bS! b4’ b5

—Pag+k) =~ Plag+k) —logz],

- loga®)
R o il 0/279(- 67~ Blog2~ ¥k )= +1)
+ (b, + k) + o o+ Y(bg + k) = Play + k) — Y(ay + k) =¥z ~m) =Pz +m) = P(z ~n) - P(z +n)
-0 zl)(as +k)- logz]" (15) - 1oga2)2}] + O(az)’ (20)
where the term O(a?) contains those of a* (loga)? and
7. a @ e au: Z @* (loga). Thus the nature at a~0 is of the logarithmic
eHs-[b:’ b:, Z:’ b:’ b:’ 6 ] divergence for the even case. For the odd case,

AN CANCANCARCANCA T la; 2 +1, 2m+1, 2nt1)
I RO NN RCARCA N = (= 1)P™_ 1+ (21 + 1)(2m + 1)(2n + 1)(a/m)(B(1)
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L T T Bl
{111
0.5 +
1
R
~05- L
0.5 1.0 1.5
A 1 A
[ T T
(222) (400)
0.5 3 0.5

-0.5 - -0.549
0.5 1.0 15 0.5 1.0 1.5
NE—— 1 L 1
T T T
(333)
| 0.5
[N A
R
-0.5
0.5 1.0 1.5 0.5 1.0 1.5
1 1 1
| | _ | .
r (444) {440}
L 0.5- 0.54
VA
\X/R
-0.54 r+ -0.51
0.5 I;O |15 0.5 I.‘O |15

FIG. 2. Values of I{a; I, m, »). R: Real part. I: Imaginary part. The abscissa denotes a.
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+39(2) - (E-1) = PE+1) - (5 - m) - (3 +m)
- $(z - n) = (3 +n) - loga®) + (ia/27%)(3(1)
+3P( -G - D =G+ =Pz - m) - (3 +m)
- ¥z =) - $(3 +n) - logd®)® - (33/(1) + 3¢’ (3)
-PE=-D=-YE+H) -V (E-m - (G +m)
~ ' (3 =n) =¥’ (3 +n)) - 20%}] + O(a?), (21)
then, we see
Rel(0; 21+ 1, 2m +1, 2n+1)= (- 1)}*™™1
ImI(0; 21+1, 2m+1, 2n+1)=0.

An expansion of I(a; I, m, n) near a=1 can be ob-
tained in a similar way as in the case of square lattice.
The values I(1;l, m,n) for 0 <l, m,n < 8 have been
expressed by combinations of elliptic integrals by
Joyce.® The leading singularity at a~1 have been given
by Morita and Horiguchi.®

]

Equations (3), (4), (18) (19) supply simple, general,
and rapid subroutines for the calculation of the lattice
Green’s functions of the body-centered lattice at arbi-
trary points inside and outside the band.

Figure 2 shows some of Rel(a; I, m, n) and
Iml(a; I, m, n) calculated. Parts near a¢~0, which show
very sharp changes, are omitted. In some subfigures,
they have another maximum or minimum and tend to
+ infinity with opposite directions. Tables and figures
of I{a; I, m, n) for 0<1, m, n<5 giving 10D values will
be supplied on request.
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-5. CONCLUSION

In this paper lattice Green’s functions for the body-
centered cubic lattice at arbitrary points were calculat-
ed. The value for the outside of the band is continued
analytically and gives that for the inside of the band.
The method of Mellin—Barnes integrals is adopted. It
gives general expressions and subroutines for arbitrary
!, m, and n, and does not require repetitious use of
recurrence relations of I(a;l, m, n).
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Multigroup replication property for external, spherically
symmetric problems of transport theory
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The replication property for multigroup spherically symmetric external problems in the transport
theory is derived and applied to reduce the system of multigroup integral transport equations to a
system of planelike singular integral equations, which can be solved by means of well-known

methods.

1. INTRODUCTION

In this paper we propose a method of derivation of
planelike singular integral equations for spherically
symmetric, external problems in transport theory.

By external problems we understand problems in which
the concentric internal sphere is filled by a black
{completely absorbing) material. The outer shell ex-
tends from the radius of the black sphere R to the outer
radius R,. For the simplicity we consider that the scat-
tering of particles is isotropic, the medium of the out-
er shell is homogeneous and there are no sources of
particles in it. Presented results can be applied as
well in the neutron transport theory as in the astro-
physical problems, wherever linear transport is ap-
plicable. The proposed method is an extension of the
known and already applied method of replication prop-
erty for the integral transport equation to new and up
to now not explored situations. The replication proper-
ty has been introduced for internal spherical and cy-
Iindrical problems, }»? This method, as concerns final
results, is equivalent with the method of integral trans-
forms, used originally only for internal problems.?
Recently after deriving our results we have found that
the integral transform method has also been used for
particular external problems®* (R, =, monoenergetic
case).

Some analogies to our ideas presented here one may
find also in the paper of Sahni.® However the explicite
formulation of the idea of “replication property” for
spherically symmetric external problems seems to be
presented for the first time in this paper and, more-
over, from the very beginning for the multigroup case.

2. THE REPLICATION PROPERTY

The N-group integral transport equation in the case
of isotropic scattering and a homogeneous medium, ex-
tended from the radius of the internal black sphere R
to the outer radius R,, has the form

. N 1
ni(r)--;?::}lc,., f:ldv'n,(r’)so%z(exp <- (—’Vi lr—r’l)

- exp{- %{_{(rz_. REV/2 4 (po2 _RZ)llz]})’

i=1,...,N, (1)

where n,(¥)/r is the density and o, is the total cross
section for the ith group, ‘and C,, describes the transfer
from the jth group to the ith one. The groups are num-
bered as follows (assuming 1/0, as a unit length): o,
>0y >... >0y=1, Inserting into the rhs of Eq. (1)
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ny(r)=mne”’* @)
we obtain R

ths =[(a) + () - ()] 25 C.sms
where

(@) =L:d,rrer'!u s; %B e(v,/v)/(r'-r),

By et dy .
(b)=j dr' e’ /uS _;.e(v,/v)/(fr')’
0

v

(c)= f:‘ dr' em/® ful (dv/v) exp{- (0,/v)[(+* =R?)* /?
+ {2 -Rz)“"z]}.

Integrating over 7’ in (a) and (b), we find

(@)=e™" Sl @(E‘_‘ +1 )-1

o V\V M
1 1{c 1)" g, , 1
Va4 - 4 ol S S
S‘O vexp[ (o{/v}wjy(l} u eXP[R(V #>] ’
1 1/1 o)\*? 1 o
- log/myr 24 2 J14 ——
)] L dve's v(u v) exp[R,(“ v)]

e’ lﬂ__]: Ei'-l
sv i\ v)

For -1/0; < 11 <0 in (a) and 0 < g < 1/0; in (b) the inte-
grals are singular; they will be understood in the prin-
cipal value sense.

Since [Ref. 6, Sec. 4, 17, Eq. (8)]
expl-(0,/V)(7* - R *] = exp - (0,/v)r] + o;R ”‘i—‘
0

X h[(RUzl/,zVi)g;_,;z)l ] e lot/ar

(Z, is the modified Bessel function of the first kind),
we have

(c)=(d +(e),
where
1 1 (A, ,
(@:Sodvexp[- (a,/u)r]; L dr’ exp[(»' /1)

- (0,/ V)2 — RV,

Vdy (&
(e)=o,RL - L dr' expl(r'/ p) - (o,/v)(r'? - R?)/?]

ng ES L[(Ro,/ve)(1? - €2)1/?]
o € (-

xexp|[-(a,/€)7].

- Copyright © 1974 American Institute of Physics 1505
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Interchanging the order of integration in (¢) we obtain

1 /
(e)=j g exp|- (0,/€)7] % s: %Z Il[(RGE{,rvi)gz};_/:s)l g

XI:’ av’ explr'/p~o/v(r? - R®/Z],
Finally we find
2 Cu Ji v myexpll? /] f; v/ empl- 0,/ )17 =71}
~ exp{- (oy/ W[(r* - RH 2+ (" ~ B)/7)

={a(w expl(/ W] + [ avla,(v, b) expl(o,/v)7]
+v4(v, 1) exp{~ (0y/v)r}]}

N
szjlcunj) (3)
where
(Y av[fo, , I\ o, IN!
ar=f, G2 +(3-2)')
-1
=22 - 2) explr 1/ - o/ ) @

-1
Yilv, W)=~ ;}1- (ﬁ + 0—;) exp[R(1/ 1+ 0,/v)]

- “’;(V ’ “') ’ (5)
where

wi(y, 1) =wily, 1) + i (v, 1),

R
wiy, p)= ,—1, S ; dx exp[x/ u - 0}/ v(x® - R®)/?],

Wi, )= 22 ! de 1[(Roy/ve)(€ = AN

s ), e (@c AT

R
x 5 Yax exp[x/u - o,/ €(x? ~ R®)'/2],
R

In (4) for 0 < i <1/0; and in (5) for ~1/0; < u <0, re-
spectively, 8;(v, 1) and v,(v, 1) are treated as principal
values, in accordance with the previous remark about
singular integrals. The formula (3) describes “the rep-
lication property”: expression (2) inserted into the
rhs of Eq. (1) “is replicated” as a sum of expressions
of the same type (with appropriate coefficients).

3. APPLICATION FOR DERIVATION OF
PLANELIKE SINGULAR INTEGRAL
EQUATIONS

The replication property suggest that we look for a
solution of Eq. (1) of the form:

n(r)= #gga,(u)e"“ + o dub e’ + [Ldud(wer,
(6)

where Ddergotes a set of complex numbers. Inserting
the expansion (6) in Eq. (1) and applying the replication
property we obtain:

Gyl e e+ flausu e + Jlauau e’
= Efea e+ [ avlp o, b expl(oy/vr]

N
+7(v, 1) expl- (a,/v)7]}) ;;/‘C LA
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+[1 di{e (1) exp[-7/p] +[l av[B,(v, u) explo7/v)

+y,(v, w)exp(-0/v)]} éC“bJ(u)

+ foldu(a.(— wye i + [ ﬁl’v{ﬁg(v, - w)expl(oy/v)7]
+74(v, - 1) expl= (o,/V)rI}) ,Z)I Cyyd (1),
Equating now coefficients of e”/* we find

2= o) 23 Cuay(), <D, @
b= T 8o VT, Cun,)
+ay (1) jf}l CibAm) + [ dvo,By(oum, v) lf)l Cy504(v)
+ [ldvoom, - V)écud,(v), pefo, 1], (8)
dy(p) = Vzevloo;(a,u, V)i)1 Cyayv) + [ dvoyy(o,u, v)

X 5C 0,00 + ay(= ) €y (1)
24C40 = Mg Cygdt

1 N
+ fg dl/ O'"}"(O‘”,L’ - V),Z=;1C”d’(v)’ He [0, 1]1

where ®
By, W) =74y, 0)=0 for |v|>1, |u|<1
[definitions (4) and (5) are for |v] <1, (ul<1].
Let us introduce the notation
si={ 1 S
a is a vector with components a;. A is a matrix with
elements 4,,.
Defining
Qyy(1)= 8y~ a,(n)Cyy,
P (1, v)=084(03 1, V)Cyy=[v/(1 ~ v) ] x exp[Ry(1/v
- 1/u)Cy,8, (1),
Q{1 V) =0yvi{oyp, WC =~ {[v/ (1 +v)] exp[R(1/v
+1/1) + owi(oy i, 1)} Cyy6,(1),
we can write Egs. (7)—(9) as
Ywa =0, rep, (10)
S(wB(w = [ dv[Bu, V) + Bk, - v)d()]
+ VQ[) P(p, va(v), relo,1], (11)
S(u)d(w) = [ av[@(u, ~ 1)) + §r, MEW)]
+ 25 Qu, va), nelo,1]. (12)

ve()

Equations (10)~—(12) for coefficients of the expansion
(6) form a system of singular integral equations (11)
and (12) and a system of linear equations (10). The
condition of existence of nontrivial solutions of the
equation (10) determines the set J:

detﬁ(u) =0, pel. (13)
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Note, that
fol dv[b;(v) e’ +d(v) e "/*)<w for R<r<R,

and let us introduce new functions
bi(w) =by(w)uexpl(Ry/ 1), di(n)=dy(u)uexp[- (R/p),
which are integrable now.
Let us finally rewrite the system of singular integral
equations (11) and (12) in the more convenient form
(B () + 30 J* v )+ Feago(u) = (14)

)

YW@ (1) +S(w) [ dv ; TReg (W =0, (15)

where

Sy{u)= C,,G,(u)u

and “regular” terms are the following :

Reg?(u)=9¢(u)u$CuL ud+ exp[~ (1/V)(R, - R)]d/(v),

+ 6,(w) IJE Cyy V;D eXP[(R /V)]a v

1
Regi(n)= u)uijl Cijs . dv [(Vi m exp[~ (1/v)(R, - R)]
+ gv—‘ w;(o;1, v) exp[- (R,/v) - (R/ u)])b}( v)

+ w0y, ~ v) exp[R(1/v = 1/ k) dé(v)]

N
+ AT R/v v
9‘(“)“;0” Vé@( YT

X exp[~ (R/u)]> a,(v).

u+o‘w‘(0,u,v)

4. CONCLUSIONS

Matrices Q(u) and §( 1) of dominant parts of singular
integral equations (14) and (15) as well as Eq. (10) are
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identical with those appearing for plane problems.
One may then say, that in this sense the spherical prob-
lems have been reduced to corresponding, equivalent
plane problems. Thus, many of the considerations con-
cerning plane problems, e.g., %% are relevant also to
Egs. (14) and (15). In the particular cases N=1 and 2
there exist vast amount of references, which are well
known and will be not quoted in a form of a complete
list. Interested readers are refered to the already
quoted monograph? (mainly cases N=1), references
connected with two-group problems may be found in
Refs. 9 and 10. Methods developed for these particular
cases may be adopted easily to solve Egs. (14) and (15).

As the particular cases we get for R=0 an internal
problem, for R, <« a critical problem, and for R,
= the Milne problem.
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Existence and uniqueness of solutions to Low’s problem
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In the framework of §-matrix theory, the partial scattering amplitudes are sought as a solution of a
certain problem involving analyticity, unitarity, and crossing symmetry. This problem, with a
condition of analyticity which is weaker than the usual one, is called Low’s problem in this paper.
By means of the fixed-point theorems of Schauder and Banach-Cacciopoli, conditions for the

existence and uniqueness of solutions to Low’s problem are given.

1. INTRODUCTION

In this paper we shall discuss the question of the exis-
tence and uniqueness of the solutions of a certain prob-
lem from S-matrix theory. The problem is to find N
functions r%(z), a=1,2,...,N (the partial scattering
amplitudes) of the compiex variable z = x + iy which sat-
isfy the following conditions: (a) analyticity in some sub-
region of the plane z; (b) unitarity; (¢) crossing sym-
metry; (d) reality; (e) a condition on behavior at infinity.
This problem (a)—(e), which will be formulated more
precisely below, is called Low’s problem in this paper.
It is a generalization of the problem solved by means of
the integral equations of Low,! Chew and Mamdelstam,2
Shirkov®* and the like.

We shall make use of the fact that the problem (a)—(e)
can be re-formulated as the algebraic system (5). Al-
though this system is nonlinear and infinite, it is in
some respects sufficiently simple and can be investi-
gated by means of the fixed-point theorems. 5'® Following
this method we shall prove, with the help of Schauder’s
theorem, the existence of solutions of (5). After im-
posing additional limitations it will be shown on the ba-
sis of the Banach—Cacciopoli theorem that these
solutions are unique.

Recently several authors have shown interest in simi-
lar questions. For instance, Warnock’ and MacDaniel
and Warnock®® have studied the conditions under which
there exist solutions of Low’s integral equation, while
in Refs. 10 and 11 Atkinson has made a detailed mathe-
matical analysis of the integral equation of Chew and
Mandelstam, and of Shirkov ef al., respectively.

These authors examine the question of the existence
and uniqueness of the solutions #%(z) of the integral
equations with the assumption that #%(z) have at most
one pole in the cut plane z.

Some of the results they obtained are less general
than those obtained in the present work, because here it
is supposed that h*(z) may have not only poles but also
more complicated singularities, e.g., cuts.

The approach in this work differs from the usual ap-
proach by the way in which the analytical functions are
represented. For instance, in the integral equation of
Low, the functions h*(z) are represented through the
Cauchy integral, while here Laurent’s series are being
used.

The algebraic approach has some peculiarities which
manifest themselves both in the theoretical studies and
in the numerical calculations (Refs. 12—14).

Because of the specific features of the algebraié sys-
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tem (5) it is appropriate to use the conventional methods
of nonlinear functional analysis, such as Newton’s meth-
od and the principle of contracting mapping®'® as, for
example, applied in the Low amplitude method. **'* On
the other hand, the integral equations of dispersive type
are solved numerically exclusively by means of the N/D
method or the inverse Low amplitude method, ® which
techniques are specific for that class of problems. The
theorems proved in this work are a more precise ver-
sion of the theorems of Ref. 15. They justify the ap-
plicability of the numerical methods of Refs. 12—14,

In Sec. II, the precise formulation of Low’s problem
is given. Besides that, it is shown that under certain
conditions it is equivalent to the algebraic system (5).

In Sec. OI, by means of Schauder’s theorem, the exis-
tence of solutions of the system (5) is proved. In Sec.
IV, using the theorem of Banach—Cacciopoli, other con-
ditions have been found guaranteeing both the existence
and the uniqueness of the solutions of (5).

1l. FORMULATION OF LOW’'S PROBLEM

Here we shall summarize the basic results from the
papers, *'1* which we shall need in our further work.

By Low’s problem we mean the problem in which N
functions h*(z), a=1,2,...,N of the complex variable
z=x+ iy are sought which obey the following conditions:

(a) Analyticity: h*(z) are analytic in p— s¢, where the
region p is the plane z from which the points belonging
to the cuts — » <x <~ 1 and 1 €x <« have been taken
away, and the closed regions s} is a subregion of the
region p.

(b) Unitarity: Imh*(x)=f(x)| h*(x)}3, 1 <x <, where
f(x) is a real function the properties of which are
specified below.

(c) Crossing symmetry: h*(~z)= EBN;IC“B K8 (2), where
the crossing matrix C*® is equal to the square root of
the unit N-dimensional matrix, but otherwise is
arbitrary.

(d) Reality: h*(2)=h*(z*).

(e) Behavior at infinity: The integrals in (1) converge.
The contribution of the contour integrals [ h*(z)dz/z
taken on a semicircle with an infinite radius in the upper
half-plane is zero.

The problem (a)—(e) is a generalization of the problem
which is solved by means of Low’s integral equation. *:®°

Copyright © 1974 American Institute of Physics 1508
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17 K212 | ZaaC*®IK(2) |’
h"(z)zz—+;f dz’f(Z’)(l ata T - ond La'J 1y
1 .

(1)

where C*%, a,8=1,2,...,N is the crossing matrix and
A, =-z¥ C*, are numbers proportional to the coupling
constant £2.

With an appropriate choice of A, and C** one could
describe by means of (1) the partial scattering ampli-
tudes of various processes, e.g., of the 7—N
scattering, 1116:17

By the conformal mapping

2=2Z/1+ 2%, (2)

where Z=Y +iY=Re'%, the cut plane p goes over into
the interior P of the umit circle C, of the Z plane, the
functions %%(z) are transformed into the functions H*(Z),
the regions s¢ into the regions S¢.

The regions S§ contain all singularities of H*(Z)
which lie inside C,. By analogy we shall denote by S¢
closed regions which contain all singularities of H*(Z)
lying outside C,. [All singularities in S* were situated
on the second sheet of 2%(2) before the conformal map-
ping. Some of them correspond to the resonances, if

any. |

Let the curves dS and dS¥ denote the boundaries of
S¢ and S% respectively. The functions H*(Z) are ana-
lytic in the annular regions D* which are bounded from
the inside by the curves dS¢ and from the outside by the
curves ds?.

For several purposes instead of regions D their sub-
regions DS are preferred. The D% are defined as the
circular rings RY < |Z| <R?, R¥ <1, R? =1, the R}
being the radii of the circles |Z| =R{ which are tangent
to the curves dS¢ and R, the radii of the circles |Z|
=RZ which are tangent to the curves dS?2.

After the conformal transformation the problem (a)—
(e) turns into a problem for the transformed functions
H*(Z). This problem, after some generalization, will
be formulated in the following way.

Find the functions H*(Z), «=1,2,...,N which satisfy
the conditions:

(A) Analyticity: H*(Z), Z < D* are analytic.

(B) Unitarity: ImH*(Z)=F(@)|H*(®)|?, where F(¢)
=f(1/cos¢), - 37 <@ <37 and H*(@)=H%e').

(C) Crossing symmetry: H*(¢ + m)= Z);v:l C* H¥ (o),
-T <@ <7,

(D) Reality: H**(Z)=H*(Z*).

Further on we shall suppose that H*(¢) are Holder
continuous. Under this notion we shall mean functions
H%(¢), which satisfy the conditions:

H¥o+27)=H*¢), a=12,.,.,N,
IHa((Pz)‘Ha(¢1)l <K|@,- @, l%
suitable constant and 0<e<1and ~71-7 <¢,,

g, <s7+m, 1>0. (3)

where K>0isa
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Under this hypothesis the functions Re H*(¢) and
Im H%(¢) are Holder continuous and coincide with their
Fourier series. This is sufficient to assert that H*(Z),
|Z] =1 can be expanded in Laurent series
HYZ)=3) Hez", |z|=1. (4)

n==c0

Taking into account the conditions (B), (C), and (D),
one can derive the following algebraic system which is
to be satisfied by the unknown coefficients H

HZ =Hf‘v+m%):m
F(v,R)E*HH,.,), a=1,2,...,N, v=1,2,..., %,
(5)
where
Fy,k)=77" f_:;: dv sinve cos k¢ F(¢) (6)
and
EXH, ;H,,,)=HXHZ,  + (- l)véC“BH,ﬁHfmk.

The system (5) has been derived in Ref. 14,

The following theorem is based on the corresponding
theorem in Ref. 14. It clarifies the equivalence between
the analytical formulation of Low’s problem through the
conditions (A), (B), (C), (D) and its algebraic formula-
tion given by the system (5).

Theorem 1: Let the functions H*(¢), @=1,2,...,N
satisfy the conditions (3), (B), (C), and (D) and let F(¢)
satisfy the condition

,F(¢2)— F((Pl)l <K, l P2 — §01|el, — 3T <@y, @, Si,

where K, >0 is a suitable constant and 0 <¢, <1

F(+3m)=0. (M
Then the coefficients of the series (4) H%,
a=1,2,...,N, n=0,%1,+2,..., % will satisfy the

algebraic system (5).

With certain modifications of the theorem the opposite
assertion is also true:

Let the system (5) have real roots H?, a=1,2,...,N,
n=0,+1,+2,...,+ = satisfying the following conditions:

The series ”Z:;H‘,’,‘ sinng and"i:l} H? sinng,

a=1,2,...,N, converge on the whole interval

— 7 <@ <7 to certain functions V¥(¢) and V¥(¢),

respectively, which are known to satisfy the

Holder condition with the exponent ¢, 0 <e<1

on the interval [- 7 -7, 7+7], where n is some

positive number (8)

H =(- 1)";‘:} C**H}, a=1,2,...,N,
n=0,-1,-2,...,—, (9)

and let F(¢) satisfy the condition (7).

Then the series (4) converge to the functions H*(Z),
a=1,2,...,N which satisfy the conditions (3), (B), (C),
(D).

If besides that the roots of (5) satisfy the condition
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|H* | <HRY)", @=1,2,...,N, n=0,1,2,...,%,

(10)
|He | <H(RZY™, a=1,2,...,N, n=1,2,...,,

where H is a positive constant and R} and R are the in-
ner and the outer radii of the annual region D¥. Then
the functions H*(Z), Z ¢ D® are analytic and satisfy the
conditions (B), (C), (D).

Remark 1: Using a result of Ref. 18, Chap. II, Sec.
3, we conclude that if |H¥| < const. [1/{n] '] then
condition (8) is automatically fulfilled.

Remark 2: Condition (10) induces the analyticity of
H*(Z) in the region D% which is a subregion of D*. This
condition is introduced because it is convenient for the
proof of the existence theorems in Sec. III and Sec. IV.

In what follows it is advisable instead of system (5) to
investigate its equivalent system™

t=A(1), (11)

where {—~ 1%, a=1,2,...,N, v=1,2,...,»is an ele-
ment of the metric space, and the operator A is defined
by the right-hand side of the system:

te =AZ} F(v;h = p)E2(tyt,)+ 2;} F(v;x ~ u) E2(7,3t,)
3 i
+2 Z:F(V;g + K)Es‘(R-g;t)‘)"' 2 lZ: F(y; £+ )\)E:(R-Q;TA)
o a
+ ? F(y;h = p) EX(1y;7,) + lZ) F(v;E - EXR_;R._,)
X3 Ix

+R% ~ 12, (12)
In (12), as well as in the following, £,7,, i, v, and
a are indices. Furthermore, & and 7 take the values
0,1,2,...,%; A, u, v take the values 1,2,...,<and a
=1,2,...,N, unless stated otherwise. In (12) the values
R_, and 7, are known, and the values ¢} are sought.
Moreover, R? denotes H%, and ¢} + 7% is equal to HY.
The values H% =R? are considered to be known. For
example, R* =}),, where A, is the baryon pole residue,
which is written explicitly in (1).

It is supposed that approximate values are known for
H? which are denoted by 7¢. Therefore, in (12) the small
corrections {7 to the approximate values 7% are sought.

I1l. APPLICATION OF SCHAUDER’'S THEOREM
FOR PROVING THE EXISTENCE OF
SOLUTIONS OF LOW’'S PROBLEM

System (12) is very convenient for numerical deter-
mination of the solutions of Low’s problem. 3¢ In the
present paragraph we shall use it in order to prove the
existence of such solutions. For this purpose, we shall
make use of one of the fixed-point theorems—Schauder’s
theorem.

Schauder’s theorem is formulated in the following
5

way?5:
Let the operator A from (11) have the properties:

(1) A maps the bounded, closed convex set U belonging
to the Banach space B into itself, i.e., if U, then
A)e U.

(2) A is a completely continuous operator.
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Then at least one element of the set U exists, which
is a solution of (11).

The application of Schauder’s theorem to Low’s prob-
lem is facilitated by making use of the function

Xl®)=x(yn)= [n]"k, n=+1,+2,...,+o
Xi0)=x(x0)=1.
In our case j,, k=1, 2,3,4 are numbers larger than 1.

The sets U,, U, and U, which we use below are de-
fined, respectively, by the inequalities

[te] <t*x(j,N), @=1,2,...,N, x=1,2,..., %, (13)
|7e| <7*x(, 1), @a=1,2,...,N, p=1,2,..., %, (14)
|R%,| <R*x(s &), @=1,2,...,N, £=0,1,2,...,w.

(15)

In (13), (14), and (15), ¢*, 7*, and R* are positive
numbers.

The function x is convenient for the estimation of
F(v, £*) also. This expression is defined by the integral
(6), which in this case is conveniently put down in the
form

r/2

F(y;e%) = 51; de[sin(v + £¥)¢ + sin(v - £*)¢] F(¢).
-r/2

Further on we shall suppose that

|F'(<Pz)—F'(<P1)| <const {‘Pz“pl'e’ "%’”s(pp [ S%ﬂ’

O<esl
Fr=9E

F(+3m)=F'(+11)=0, o

(16)

Let us consider the auxiliary function
F@)=F(p), -in<q<im
F)=0,

It is obvious that F/(¢), — 7 <¢ <7 is Holder con-
tinuous with an exponent ¢, 0 <e<1. This means that the
Fourier coefficients of the function f(qo) obey condition
F_ =0(1/1n1'"*®) (for proof, see Sec. III in Ref. 19).

ir <@ <3(n/2).

Hence F(v, £*) can be majorized by the inequality
F(v;£%) <const [(v+ £%) s+ (v = £%) 4], j,>1if vt £* 20,
F(v;*)=const, if v+t*=0.

Using the function x(j,, #) introduced above, at »
=v+ £t* and n=v - £*, and choosing an appropriate
positive constant F we obtain the inequality

F(v;£%) s Flx (v + £%) +x (v - E¥)].

By means of (13), (14), (15), and (17), Eq. (12) is
majorized by inequalities containing x. In order to sim-
plify these inequalities it is convenient to use the
formula

am

éx(z(”))(z(""'m)(sz Xa(m) + Ky xo(m), (18)

where
K=(21+ 1)g(,) + 1; K, = (2%2+ 1)g(,) + 1;

J1>154,> 1,
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and ¢(j,) and ¢(j,) are the Riemann ¢-functions from the
theory of numbers.

When proving (18) it is convenient to proceed from the
expression

2 xu(W)xx(n—m),
which is numerically equal to the expression
,.Z;., X (1) xo(1 + m).

The inequality (10) is proved by majorizing for m = 2
the right-hand side of the equality

2 xl(n)xz(n—m)=81+x1(0)x2(—m)+52+33
+X1(m)X2(O)+Sgy
where

-1 =1

S, =,.=E.., Inl'lz <m’2 E ‘k l-h:Xz(m)gUz)’
n -1

S,= -j1|” m"’2<m"2 2 ’kl “1=x,(m)E(y),
=1 k==

n =0.5m is even and ' =0. 5 (m + 1) if m is uneven

m-1 m-1
83=Z;! nit(n —m) 2 < 2 1’;{ |n=m|2,

< i Zl) | | 2= 21y,(m)t(G,),

S,= 2 n—fz<m-fzk§ lk"’z:xl(m)g(jz),

n=m+1

For m =0 and 1 the inequality (18) is immediately con-
firmed, For m <0 the proofs are analogous.

In order to satisfy the first condition for the operator
A we substitute in (12) ¢2, 7%, R%, and F(v, £¥) with the
expressions from (13), (14), (15), and (17).

Having the inequality (18) we can easily apply the
Schauder’s theorem to Low’s problem.

For this purpose we choose the Banach space to be a
subspace of the space of the bounded sequences of
numbers. > More precisely, we use a space Y, the ele-
ments y of which are the sequences of numbers y,,
lygl SAX(j; E)y E==o, .., "2) _150’1’-”,”! j>1’
the norm being defined by equality

lIyll =s§1p[y€|.

As (18) holds only for j>1 in the following we shall
suppose in (13), (14), (15), and (17), j, > 1, j,>1, j, > 1,
and j,> 1, respectively.

To satisfy the condition A(f) ¢ ¢, it is enough to put
down

(1+ NCIFE* 2 [x (v + X = 1) + xy(v = X+ 1) ka0 xa (W)
+2(1 +Nc)Ft*~r*Z) v+ A=)+ x (v =21+ w) (i )x,(0)
+2(1 +NC)Ft*R*Z)[x4(v+ A+ E) +xa(v = = E) Ko(E)x:s (V)
+2(1 +NC)FT*R* Z)[x4(V+ E+ )+ xg(v = £ = M) xs(E)x2(0)
+(1+ NC)FT*Z’Z) [x4(v A= 1) Fxg(v =2+ ) Ra(B)x(0)
+(1+ NC)FR* Z[x4 (v+E=n)+ xy(v = £ +0) Ixs(ENxs()

+ R*y,(v) + T*)(z(l/) < t*x,(v),

where C=max C**®, @,8=1,2,...,N. When deducing

the latter inequality it is advisable to suppose at first
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that N=1, and C**=0. In this case in the inequality we
would have 1 instead of the factors 1+ NC. In the last
expression NC accounts for the contribution of the term
N
(=12 C**H, Hy,,,
81

in the formula which defines EZ.

Summing over all indices from — < to + < and using
(18), we obtain

2(1 + NC)F t¥°[K2, x (V) + (K, Ky, + 2K, K, )x,()]
+2(1 4+ NC)FT**[K2, X 4(V) + (K 5K, + 2K, K WXo( V)]
+2(1+ NC)FR*¥[K2 x (V) + (K oK 4, + 2K K35 )x5(1)]

+4(1 + NCYF*T¥[K K X o(V) + (K 15K p g + K oB 53 )Xo (V)

+ K K oxo(1)]

+4(1 + NC)FT*R*[K (oK 1oX o V) + (K 15K oy + KK oo )Xo (V)
+ K3 Kopxo(¥)]

+4(1+ NC)FR*1*[K 1K ;X (V) + (K 5K 14 + K3 K 1 )Xa(V)
+K Ko x,(v)]

+ TR (V) F R¥Y (W) < t*x,(v), v=1,2,...,%,

We suppose that j, =j,; j, =j,; and j, >j,. Under this as-
sumption y,(V) <x;(); xa(¥) <x,;(¥); and x (v) <x,(v). I
we put 7* =pt* and R*=gqt* and suppose that p+¢<1,
the above inequality is transformed into the inequality

1-p-¢g
iy 2(1+NC)F(U +pU, + qU, + p*U, + ¢°U, + pqU,)’

(19)

t*_

where
U =K, ?+K.K,,+2K K,,,
U,= 2(K42K41 T KK+ Ko Ky +K24K12)’
Us=2(K43K41+K43K14+K34K31+K34K13)’
U,=Kop +K,K,,+ 2K, K,,,

U; zKis + K 5Ky + 2K Ko,
Ug=2(K oKy + K 3Ky + Ky yHpy + K3 (K p)-

Let us suppose that £* is so chosen that inequality (19)
is satisfied. In respect to (13) that means that the ab-
solute values of the left-hand side of the system (12)
are less than the absolute values of those on the right-
hand side. In other words, if inequality (19) is satisfied,
the set U, =U, is such that A(U,) ¢ U,. And because by
(13) U, is a bounded and convex set, it follows that con-
dition 1 of Schauder’s theorem has been satisfied. The
second condition of Schauder’s theorem demands that A
should be a completely continuous operator. Let us re-
call the definition of a completely continuous operators:
the operator A is completely continuous on the set U, if
it is continuous on U, and compact on U,, i.e., when A
maps every bounded subset of U, into a compact one.
The operator A is continuous on U,. This is easily
proved with regard to formula (23) from the next section.
The compactness of U, is proved when taking into con-
sideration that according to its definition U, is
compact, 2°

Therefore, if condition (19) is satisfied, which with an
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appropriate choice of the parameters ¢*, p and ¢ can
always be achieved, then all the requirements for the
applicability of Schauder’s theorem are also satisfied.
This result is expressed in the following theorem:

Theorem 2:
Let (16) be satisfied. Let sequences of numbers
RS, a=1,2,...,N; £=0,1,2,.,.,=

are known such that |R% | <const x(js; ). (20)

Then the algebraic system (12) has at least one solu-
tion B¥, @=1,2,...,N, v=1,2,..., = such that r?
=0[1/1v|*], j,> 1.

Let in addition the condition (9) be satisfied.

Then the series (4) converge to the functions H*(Z),
a=1,2,...,N, which satisfy the conditions (3), (B), (C),
(D). In the particular case when the sequences HY, n=0,
~1, -2, are finite, the functions H*(Z), Z< D? (1
=R¢>|Z| >R} =0) are analytic.

Remark 1: Condition (16) can be replaced by the
stronger condition:

The function F’(¢), — 37 <¢ <i7 is bounded and

1in}2 [F(@) (37 — @) 9] # 0, (16')
'Rd g

Proof: In addition to the above motivation in proving
the theorem we remark that j,>1 and j,>1, the first
because of (20), and the second because F*
=0[1/1n1***], 0<e<1. Then choosing j, >j, and j, > 1,
we can write j, = j,, j;>j, and j, 2 j,, which was supposed
in deriving (19). So we complete the proof of the first
part of Theorem 2.

To prove the second part of the theorem, it is suffi-
cient to demonstrate that the conditions of the inverse
part of Theorem 1 are satisfied:

Condition (8) is indeed fulfilled. This is a consequence
of the fact that according to the first part of Theorem 2
|HY| < const x(j,, #) n=0,1,2,...,». Condition (20)
means that |H?| < const x(j;, 7). From here, in connec-
tion with a theorem of Ref. 18, Chap. I, Sec. 3, it fol-
lows that V*(¢) and V?(¢) exist and satisfy the Holder
condition with exponent ¢, 0 <e<1, on the interval
[-7=n,7+7], where nis some positive number.

Condition (19) of Theorem 1 is also fulfilled because
it figures in Theorem 2 as well.

Condition (7) of Theorem 1 is satisfied because it is
a consequence of condition (16) of Theorem 2.

With this the proof of Theorem 2 is completed.

Let us consider the application of this theorem in two
special cases.

(a) Suppose that R% =0, £=2,3,...,°and R
=x,/2

With these assumptions and the appropriate choice of
C*® Low’s problem corresponds to the problem resolved
by means of the integral equation of Chew and Low. The
existence of solution to this problem depends mainly on
the properties of the cut-off function.
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So in the case of the G. Salzman and F. Salzman’s
choice of cutoff function f{x)=[(x — 1)3/2/127] exp[- (x*
- 1)/4m,], where m, is the meson mass, passing from
f(x) to F(¢), we conclude that the condition of Remark
1 to Theorem 2 is satisfied. Hence the problem has at
least one solution H(Z) which is analytic at least in re-
gion 0< |Z| <1. The existence of at least one solution
to (1) was proved by Warnock” through its direct investi-
gation.

(b) Suppose that R%, =0, £=1,2,3,..., a=1,2,...,N,
i.e., the partial scattering amplitudes have no pole at
the origin. For N =3 and with the appropriate choice of
C*® this problem is equivalent to the integral equation
of Shirkov ef al.%* for 7 - 7 scattering in the low-energy
region. If instead of the function f(x) from Ref. 10 we
use the function f(x) e"”‘, k — 0 the results of Theorem
2 could be transferred directly to that case. If we con-
jecture that, we can put in the solution #=0, we may
conclude that the Shirkov equation has at least one
solution.

In particular cases as, for instance, in the case of the
applications (a) and (b) of Theorem 2, the condition of
analyticity (A) is satisfied. But in general Theorem 2
does not guarantee the fulfilment of this condition. More
general conditions assuring the fulfilment of the four
conditions are defined in the next theorem.

Theorem 3:
Let (16) be satisfied. Let sequences of numbers
R%, @=1,2,...,N, £=0,1,2,..

such that |R% | <const(R?)f, where 1>R¥>0

., © are known

are constants. (21)

Then the algebraic system (12) has at least one solu-
tion %, @=1,2,...,N; v=1,2,..., « such that &}
=0[1/v1], j,>0. '

Let in addition condition (9) be satisfied.

Then the series (4) converge for 1> |Z| >R to the
functions H*(Z) «=1,2,...,N, which are analytic for

Ze=D*1=R2>|Z|>RY) and satisfy the conditions (B),
(€), (D).

Proof: Having in view condition (21) we introduce in-
stead of x(j;, #) the function (R¥)™'",

We remark that the relations (13) and (14) hold also
for Theorem 3 if relation (15) is substituted by (15’)

|R%| <R/ %R, a=1,2,...,N; £=0,1,2,..., . (15)

The proof of Theorem 3 can be carried out merely as
a literal repetition of the proof of Theorem 2. For this
purpose the relation (12) must be substituted with an
analogous relation for the expression

20 Xa(n)RE)meml,

im0

This is easily achieved, observing that for K large

enough (R¥)™'™ <Kyx(j,, n) so that we get the relation
27 Xa(WRY I <K x (m) + Ky, xe(m),

n=-

where

(127)

Ky\y=KK,3, Ky =KKg.
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With (15’) and (18') instead of (15) and (18) we repeat
the reasoning leading to the proof of Theorem 2 and get
the proof of Theorem 3. In Theorem 3 an extra moment
is the proof of the analyticity of H*(Z), which is trivial.

IV. CONDITIONS UNDER WHICH THE
SOLUTIONS OF LOW’S PROBLEM EXIST
AND ARE UNIQUE

With a certain modification of the conditions of
Theorem 2, one could guarantee not only the existence
but also the uniqueness of the solutions of Low’s prob-
lem. This can be achieved by means of the Banach—
Cacciopoli contraction mapping principle. The latter is
another variant of the fixed-point theorems which give
not only the existence of the solution but also uniqueness
and a method of calculating that solution, 56

The Banach-—Cacciopoli theorem reads®é:

Let A be an operator defined on the complete metric
space X satisfying the following conditions:
A(X) e X.

(b) In X, A is a contracting operator, i.e., if # and
t'’ are two elements of X and if the distance in X is de-~
noted by p then

plA("), A(t)] <nplt’, ],

where A <1 is a constant.

(a) A maps the space X into itself, i.e.,

Then Eq. (11) has one and only one solution, which
can be obtained numerically by the method of successive
approximations.

The first condition of the theorem is satisfied if in-
equality (19) is satisfied. This assertion needs some
justifications. In Sec. III, where inequality (19) was
derived, (¢, «=1,2,...,N, v=1,2,..., o was supposed
to be an element of the Banach space. This conclusion,
however, does not depend on the choice of the functional
space. On that account (19) is also used in the present
section where the weaker assumption is made, viz.
that ¢ is an element of some complete metric space X.

The choice of X is not unique. The proofs are, how-
ever, simplified if X represents the closed set U,, de-
fined by (13) where the distance between the elements ¢’/
and ¢’ is given by the expression p (¢'’,¢')=sup, It *
-t%, a=1,2,...,N; v=1,2,..., %, It is obvious that
X is a subspace of the space C, of the converging
numerical sequences. ®

The proof of the second condition of the Banach—
Cacciopoli theorem is reduced to evaluation of the
distance p[A(#"), A(#)].

Here again, as in the previous section, the conclu-
sions are to be made with the assumption that a=N=1
and C*#=0. The transfer to the general case N0 and
C*#+0 in the final result follows immediately.

We have

plA("), A(t)]=max 3 F(vix - u)E L, - 1))
v e

+ 2? F(rsn = p)7,(ty — )+ 22 F(v;E+ MR_ (8!~ 1)) .
1Y 20
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Setting ¢! =¢, + ¢,, we obtain for p[A(¢"),A(t')]
plA("), A(t)]

= max (EF(»;A - W+ 50.) 0, + (B + 3009, ]

v Al

+2 22 Fy;x = )1, (pX+ZZF(V £+A)R_ecp,)

Ay

Or, exchanging the indices in the last term of the brack-
eted expression on the right-hand side,

plA(t"), A(t)]= max 2Z F(u;x = p)(t, +39,)0,
+Z} F(yy = p)7, (p,‘+ ZEF(V E+MR_, <px>
From the definition of x(j,;7) it follows that

@, <2t*yx,(u) and ¢, <20%x,(A).

We denote by ¢ the largest of the numbers ¢,,
A=1,2,...,%. Obviously, ¢=p(t", ). Then for
pl[A(t"), A(t")] we obtain

plA(E"), A1) <max (4022 | Fvix = ) alw)
+21r [F(wsh = ) |xa(p) + 2R*Y | F(v; e+ x)lxs(s))¢»
' (22)

Introducing (17) into (22) we have
plA(t"),A(t")]

< max <4t* F)Z;‘[x4(v— A+ )y (v - )y, ()

+ ZT*FxZu sV =2+ B) +x(v =X+ 1) Ixa(1)

+ ZR*FeZ; [xv+E+0) +x(v-E- x)]x3(£)> ¢

Strengthening the inequality we sum on p and £ from — «
to + o, Making repeated use of (18), we obtain

plA("), A(¢)) smaxT (4t*F[K41x4(v )+ Koy (v =)
F K x (v N+ K x (v + M) ]+ 274 F[K ox (v = 1)

+ KpXo(V = X) + K o) (v + ) + K, x,(v + 1))
+ 2R¥F[K 43 (v +X) + Ky x (v + 1)

+K43X4(V = X) + K34X3(V - K)]) ¢-

There remains the sum over \. Strengthening the in-
equality we sum from - « to «, For instance, let us
consider the sum

g_}nh(u—)\).
With the substitution v =) =X we have
© -1
- +1+ =~
Z_xv=1=2 mf E(X)’ 26t

where ¢, means {(j,). Making repeated use of this for-
mula in the latter inequality, for p[A(#'), A(¢')] we obtain

p[A(t"), A(t')]< F(t*V, + T*V, + R*V,) ¢,
where

V,=8K,(2¢,+ 1) + 8K ,(2¢, + 1),

Vo=4K (2, + 1) + 4K, (28, + 1),

Va=4K,4(22,+ 1) + 4K,,(2¢, + 1).
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Passing to the general case N>1 and C*##0, as in the
former section, we obtain the formula

p[A(#"), A(t)]< (1 + NC)F(t*V, + T*V,+R*V,)¢. (23)

It follows from (23) that for all the elements of the set
U, the operator A(¢) is continuous since at ¢— 0,
plA(#"),A(#)] =~ 0, a result which was used in the former
section. As ¢p=p(¢", '), it follows from (23) that the se-
cond condition of the Banach—Cacciopoli theorem re-
quires that the inequality

(1+NC)F(t*V,+ 7*V,+ R*V,)=y <1
is satisfied. Or, with the notations 7*=pt* and R* = q/*
t*<iF =[(1+NCYF(V, + pV, +qV,)] . (24)

The first condition of the Banach—Cacciopoli theorem
is satisfied if in (19) we choose t* < ¢*. For the second
condition it is necessary for ¢* to be less than the num-
ber ¥, defined in (24). For that reason the Banach—
Cacciopoli theorem can be applied to Low’s problem if
the smaller of the numbers ¢} and ¥ is chosen for ¢*.
That gives us grounds for formulating the following
theorem:

Theorvem 4:

Let (16) and (20) be satsified. Let #* be the
smaller of the numbers ¢} and ¢} defined in

(19) and (24), respectively. (25)
Then the algebraic system (12) has one and only one
solution t*, a=1,2,...,N, v=1,2,,..,« which satis-

fies the inequalities |t¥] <t*x(j,, v).
Let in addition the condition (9) be satisfied.

Then the series (4) converge for | Z| =1 to one and
only one set of functions H*(Z), a=1,2,...,N, which
satisfy conditions (3), (B), (C), (D).

The proof of the theorem was actually made above.
We have only to add that in the Theorem 2 the first two
conditions ensure the inequalities j,, j,, j, = j, > 1, which
are necessary for the deduction of (19). Similarly as in
Theorem 2 the last condition is necessary to guarantee
the correspondence between the algebraic and abstract
version of the problem. The proof of the last assertion
of Theorem 4 follows immediately from Remark 1 to
Theorem 1.

As can be proved, Theorem 3 guarantees not only the
existence but also the uniqueness of solutions to a prob-
lem (A), (B), (C), (D) corresponding to the Chew and
Low equation and as we conjecture to that of Shirkov. As
in Sec. III, in the latter case we must replace f(x) by
f(x)e™, k-0, and then put 2=0 in the solution,

If we are interested in the case when H(Z) is analytic
in a circular ring, then Theorem 4 must be replaced by
the theorem

Theorem 5: Let (16), (21), and (25) be satisfied. Then
the algebraic system (12) has at least one solution A%,
@=1,2,...,N; v=1,2,...,% such that h*=0[1/1v| "],
j,>1. If in addition the condition (9) is satisfied, then
the series (4) converge for 1 <|Z|>R{ to one and only
one set of functions H*(Z), «=1,2,...,N which satisfy
the conditions (B), (C), (D) and are analytic in the re-
gion D¥RZ=1> |Z| >R} >0).

J. Math. Phys., Vol. 15, No. 9, September 1974

1514

The proof of Theorem 5 is analogous to that of
Theorem 4, except at a few points where, as in Theorem
3, the function (R¥)"'™ is introduced instead of the func-
tion x(j,, #).

V. CONCLUSION

In this paper a generalization of Low’s integral equa-
tion (1) was studied. The generalized problem under the
name of Low’s problem in Sec. II, is formulated as the
problem (A), (B), (C), (D) and the algebraic problem
(5). The conditions under which the two formulations
are equivalent are specified by Theorem 1. The con-
ditions for existence and uniqueness of solutions to
Low’s problem in its abstract and algebraic formulations
are given in Theorems 2, 3,4, and 5.

The results obtained in this paper partially coincide
with the results in Refs. 7T—11. In some cases they are
more general and in others less so.

So, for example, the methods developed in Refs. 7
and 8 can be used for the examination of a kind of Low’s
problem which is more general than the integral equa-
tion (1) but less so than Low’s problem considered here.
The generalization consists in the replacement in (1) of
the inhomogeneous term 1 _,/z, by the series

l‘l.{.iR?".

z me 2"

In this case 4*(z) could have not only a single pole at
z=0 but also singularities in a larger domain. More
precisely the region which is the point Z =0 in the case
of equation (1) after the generalization of (1) would be-
come a circle C with the center z=0 and radius r<1.
Circles C with »> 1 are excluded on the following
ground: When C has a radius »>1, the coefficients R,
would contain information of the unknowns %*(z). This
would complicate the problem in the case > 1 to such
an extent that the treatment of the integral equation
would not be possible by simple generalization of the
methods in Refs. 7 and 8. For the algebraic method
which was developed here s§ is not restricted in such a
way—it can, in principle, coincide even with the cut
plane z.

There are, however, other problems where the ap-
proach of the integral equations is more efficient. These
are, for example, the proof of the existence of resonant
solutions and the proof of their multiplicity. Although in
both cases the investigation on the basis of the algebraic
system is possible, it would give less interesting results
than the direct analysis of the integral equations.

Interesting results may be expected in studying the
behavior of the solution of Low’s problem for ¢ —z37.
Investigations in this direction are now in progress.
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Properties of two-phase “cell materials”
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“Symmetric cell materials” and “asymmetric cell materials” were defined by Miller in connection
with the physical properties (such as the effective dielectric constant) of two-phase solid mixtures. It
is shown here that while the “symmetric cell material” is self-consistent, the “asymmetric cell
material” is not: The postulated three-point probabilities do not add up to the correct one-point
probabilities. A self-consistent generalization of the “symmetric cell material”, based on the
requirement that a certain integral must reduce to an integral over a finite region, is developed, and
one construction procedure for producing such a material is described.

1. INTRODUCTION

In a study of the physical properties of two-phase
solid mixtures, Miller!*? introduced the concept of a
“symmetric cell material”, For such a material, the
upper and lower bounds® to such quantities as the effec-
tive dielectric constant are somewhat closer than for a
general two-phase mixture, The symmetric cell mate-
rial can be defined most simply by describing a mathe-
matical procedure for constructing one: first divide the
space by some random procedure into statistically
equivalent* cells, then assign each cell randomly and in-
dependently to material A or to material B with proba-
bilities p and g=1 - p, respectively. It follows that,
given that two points are in different cells, each of the
two points has, independently of the other, probability
p of being in material 4 and probability ¢ of being in
material B,

Miller! also introduced the concept of an “asymmetric
cell material. ” For it, the cells of one component ma-~
terial are not statistically equivalent (as regards shape
or size) to the cells of the other. Consequently some
other definition than that given above is necessary.
Miller specifies that “the material property ¢ of a cell
is statistically independent of the material property of
any other cell.” It is not obvious that the postulated
statistical independence is compatible with distinguish-
ability of the two types of cell, or that Miller’s recipes
for constructing such a material will indeed lead to one
that satisfies his definition. To get a clear idea of what
is meant, one must examine the specific three-point
probabilities postulated.

In Sec. 2 it will be shown that Miller’s “asymmetric
cell material” is in fact not self-consistent: The three-
point probabilities do not add up to the correct one-point
probabilities. In Sec. 3 a self-consistent generalization
of the “symmetric cell material” will be developed. The
property required of it is that, like the “symmetric cell
material,” it must reduce a certain integral to an in-
tegral over a finite region; this is the property that leads
to the improvement in upper and lower bounds mentioned
earlier,

In Sec. 4 a specific model, based on a definite con-
struction procedure, will be described and will be shown
to possess the general properties derived in Sec. 3. In
Sec. 5 some conclusions will be drawn,

2. MILLER'S “ASYMMETRIC CELL MATERIAL"”
In this section Miller’s notation will be used, with

some small modifications. A point chosen at random
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has probability ¢ of being in material A (Miller’s ma-
terial 1) and probability 1 ~ ¢ of being in material B (his
material 2). For three points 1, 2, 3, with position
vectors ry, r,, r;, the various joint and conditional
probabilities, because of the assumed statistical homo-
geneity, depend only on the two relative position vectors
r=r,~-r, and s=r, -r, (Miller therefore takes r,=0);
and because of the assumed statistical isotropy, these
probabilities are invariant to a rigid rotation of the
triangle formed by the three points. They may therefore
be taken to be functions of ¥ =Irl, s=18l, and a third
variable. We shall choose as this third variable the
third side of the triangle, t=Ir,l =Ir;- ryl =8 —r|
(see Fig. 1).

The variables 7, s, and f are in a certain sense not
completely independent, since they are subject to tri-
angular inequalities. For our purposes, however, the
important property of », s, and f is that whatever val-
ues they have, the value of one of them can always be
changed (though perhaps in only one direction) without
changing the others; for example, £ can be changed at
constant » and s by rotating r or s about point 1. From
the independence of 7, s, and £ in this sense, it follows
that if f(r)=g(s), then f(r)=const; for f(r) is not af-
fected by a change of s, g(s) is not affected by a change
of », and therefore the common value of these two quan-
tities is not affected by a change of » or of s.

We shall encounter three types of function, for which
certain abbreviated notations are convenient. (In the
following illustrations, the letters f, v, and » may be
replaced by other letters.)

(1) A function f(») of the distance » between points 1
and 2. Qur abbreviated notation will be

f=rn, f'=f6), f"=10. 2.1)

(2) A function v(r; s, f) of the three distances 7, s, and
t, invariant to an interchange of s and £ but not to an in-
terchange of » and s. We shall use the abbreviated
notation

v(r; )=o(r; s, )=v(n; t, s) (2.2)
and the still more abbreviated notation
v=o(r;), v'=u(s;), o =o(f). 2.3)

(3) A function u(7, s, f) invariant to all permutations
of% s, and £:

(2.4)

The primed notation is that used by Miller; the more
explicit notation f(»), »(r;), u(r,) is helpful in applica-

u=ulr,)=ulr,s, )=ulr, t,s)=uls,r,1).

Copyright © 1974 American Institute of Physics 1516
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FIG. 1. Notation for describing the relative positions of three
points 1, 2, 3. In most of this article, the independent varia-
bles chosen are 7, s, and £.

tions of the theorem of the preceding paragraph.

Miller’s three-point probabilities are listed and de-
fined in Table I. The possible states are listed in col-
umn 1, where, for example, an entry A in the subcol-
umn headed 1 means that point 1 is in material A, and

- brackets enclose points that are in the same cell. (The
brackets in “A] B{A” are to be interpreted as enclosing
the two A’s. Two points in the same cell are automati-
cally in the same material.) The corresponding probabil -
ities are listed in column 2. They are expressed by
Miller in terms of the conditional probabilities defined
in columns 3 and 4. Here column 3 shows the condition
under which the conditional probability in column 4 is
defined; the state of which it is the conditional probabil -
ity is the state or group of states in column 1. Thus g,
is the conditional probability that all three points are in
a single A cell, given that point 1 is in A; the condition
can equally be that point 2 or point 3 is in A, but for
simplicity these alternates have not been indicated in the
table. Again, &, is the conditional probability that points
1 and 2 are in a single A cell, given that point 1 (or
equivalently point 2) is in A. The other g and the other
h’s are defined similarly. Finally, Z is the probability
that the three points are in three separate cells; its val-
ue, in order that the total probability may be unity, is

Z=1-¢gi+hy+hi+hi) - (1 ~&)(ge+hy+hz+h3).
(2.5)

From the forms of the probabilities in column 2, it
is evident that the “statistical independence” of the
definition has been interpreted as follows: The condi-
tional probability that point 1 is in A or B, given that
points 2 and 3 are not in the same cell with it, is inde-
pendent of whether the other points are in a single cell
or in two different cells and of which materials they are
in, and is ¢ for A, 1-¢ for B. Thus the probability of
B [A A] has been found by multiplying the probability that
points 2 and 3 are in a single A cell, namely ¢k{, by
1-¢.

Is the independence thus postulated consistent with the
assumption of different functions g, and g,, etc., for the
two materials ?

The test of the consistency of a set of three-point
probabilities is that they must give the correct one-point
probabilities; it is not sufficient that they give the cor-
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rect total probability 1. In this case the probability that
any one point shall be in A must be ¢; and in B, 1-¢.

On adding all the probabilities for states in which
point 1 is in A and equating the sum to ¢, we get

dlgi+hy+hy+oh] + (1= Phg + Z]= ¢, (2.6)
whence (except in the trivial case ¢ =0)

githi+hi+on + (1 -y +Z=1. 2.7
Similarly we get for point 2

gt +hl+oni+(1-p)s+Z=1. (2.8)
Subtraction gives

(1-9)(r} —h{ +hg ~hz)=0, (2.9
whence

Ry—hs=h{ —hj. (2.10)

Now the conditional probability that 1 and 2 are both
in the same A cell, given that 1 is in 4, is

fi=fH(r)=g,+hy

and is a function of » only. Hence we may (as Miller did)
express the asymmetric function z,(7; ) in terms of the
symmetric function g,(r, ) and the function f,(7) of a
single variable:

(2.11)

hy=f1-41. (2.12)

"

Similarly s, =f; —g; also hi=fl~gy, hi= " - gy,
Wy=f] -gs, hi=f{ —g,. With these substitutions, (2.10)
becomes

fA-f=f-f (2.13)

or

F1(s) —fa(s)=£1(t) — falt). (2.14)

By the theorem of the second paragraph of this sec-
tion, it follows from Eq. (2. 14) that f,(s) ~f,(s) =const.
We suppose that the cells are of finite size, or at least
have a distribution of sizes such that the probability of
maximum linear cell dimension L approaches zero as
L— «; then f(s) and f,(s) approach zero as s—, and
therefore the constant is zero, and

fz=f1, lezfl" fZ”= 1”' (215)
Returning now to (2.7) and inserting (2. 12) and (2. 15),
we get

(1-9¢)(g1—g)=0 (2.16)
and hence
&, )=g,(r,). (2.17)

From (2.15) and (2. 17) it follows that h,=h,, etc. Thus
all the functions are the same for materials A and B.
That is, the three-point probabilities postulated by
Miller are consistent only if the material is symmetric;
if g,# g, and so on, they do not add up to the correct one-
point probabilities.

The same result can be obtained by setting the total
proability that a point is in B equal to 1 —¢. This con-
dition and the one used are not independent, because
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TABLE 1. Three-point probabilities and conditional probabili-
ties according to Miller.

State Probability Condition Conditional Probability
1 2 3 123
A4 A Al o5 A £1= g(7,)
[B B B (1 d)g, B 5= g(7,)
[A 4 4 -
h o4z (1 oy } A Ry = hy(r;)
[B- Bl A ¢(1-¢h .
(B Bl B (1-o)hy } B hy = Inlr;)
Al A [A ¢ ’ e
Al B A ol-¢), } Hy = hy(s;)
B] A [B ¢(1—o¢)h = .
Bl B (B (1-¢)%, } 7y = hafss)
A [A Al o "y (g
5 U4 oal W,} 1Y = hy(t;)
A [B Bl ¢(-¢)n! * =1 (s
B B B (- ¢)zh.2 } B 1 = hy(t;)
A A A ¢z
A A B ¢§(1 -0z
A B A -4z -
z=2Z(r,)
AR R PN
B A B ¢(1-—¢)ZZ ~(1-¢)gothy+hy+hy
B B A ¢(l-¢)z
B B B (1-¢)z

Z has been given a value that insures that the sum of the
two probabilities in question is unity.

It might seem that we could rescue the model by inter-
preting the ¢ of the three-point probabilities as a quan-
tity (perhaps a function of », s, and f) different from the
one-point probability (or volume fraction) p. But then
the probability that points 1 and 2 are both in the same
A cell becomes ¢(g,+hy) =¢f;=¢(r, s, H)f,(r). Since this
must be a function only of », ¢ must be independent of
s and /. By a similar argument for points 1 and 3, ¢
must be independent of » and /. Hence ¢ must be a con-
stant, equal to its value at »=s=1{= =, But there the
only states with nonvanishing probabilities are the last
eight in Table I, whose probabilities are clearly p°,

p%(1 -p), etc.; the g’s and k’s are all zero, Z=1, and
we have ¢3=p> ¢2(1-¢)=p*(1 -p), etc., i.e. ¢ =p.
Thus we return to the original model.

3. A SELF-CONSISTENT ASYMMETRIC
GENERALIZATION OF THE “SYMMETRIC
CELL MATERIAL"

Since the “asymmetric cell material” as defined by
Miller is not self-consistent, the asymmetric generali-
zation of the “symmetric cell material” must take some
other form. Such a generalization is the topic of this
section.

We define “cells” as nonoverlapping regions, each of
which contains only one of the individually homogeneous
component materials. Since a cell as thus defined can
always be divided into smaller cells, the division into
cells is not unique. It could be made so by requiring that
no two cells of the same material have a surface of con-
tact, but for our purposes such a requirement would not
be helpful. We shall suppose merely that the division has
been made in some definite way, and that the cells are
of finite size (or at least have a size distribution such
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that the probability of maximum dimension L approaches
zero as L becomes infinite).

According to this definition, all two-phase mixtures
may be considered to be composed of cells. In Miller’s
“symmetric cell material, ” the distribution of the two
materials among the cells is statistically independent of
the distribution of any other property that distinguishes
different cells; in consequence, certain integrals over
the specimen or over space reduce to integrals over a
cell. The generalization undertaken here is a generali-
zation of this property to a less restricted class of two-
phase materials. Accordingly, we shall first consider
an arbitrary two-phase mixture, and shall find the gen-
eral form that the one-, two-, and three-point probabil -
ities must take; we shall then determine what conditions
may be imposed in order that the material may possess
the desired property.

In this section, we shall use joint probabilities in-
stead of conditional probabilities and shall use the nota-
tion p and ¢ instead of ® and 1-¢.

We consider first the one-point probabilities. These
are very simple: probability p that a point r picked at
random is in material A, probability ¢ that it is in B; in
order that the total probability may be unity, p and ¢
must satisfy the constraint

p+qg=1. (3.1)

Since we assume statistical homogeneity, p and g are
constants, independent of r.

We consider next the two-point probabilities. These
are shown in Table II for points 1 and 2. We have used
a single symbol R for the probability that 1 is in A and
2 in B and for the probability that 1 is in B and 2 in A.
Their equality follows from the postulated statistical
homogeneity and isotropy; these enable us, without
alteration of the probability, to translate points 1 and 2
rigidly until 1 is where 2 was, and then to rotate r;,
rigidly about the new position of 1 until 2 is where 1 was.
The homogeneity and isotropy also insure that all the
probabilities listed are functions of » only, and not of r,
and r, separately or of the direction of r;;. The corre-
sponding probabilities for points 1 and 3 are P’ = P(s),
etc.; for points 2 and 3, P"=P(t), etc.

These probabilities must satisfy the constraints: total
probability that 1 is in A=p, total probability that 1 is
in B=g¢; and similarly for point 2. Explicitly,

(3.2)
(3.3)

P+P*+R=p,
Q+Q*+R=q.

TABLE II. Most general two-point probabilities.

State Probability Value at =0 Value at r=%

1 2

[A A] P=P(n P 0

[B B] Q=0 q 0

A A P*=PX(7) 0 i

A B R=R(7) 0 pq

B A R=R(7) Y b7

B B Q*=@*(n 0 ‘I?
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TABLE III. Most general three-point probabilities.

State Probability
1 2 3
[A A A] Spa=8,40(7,)
[B B B] Sp=Sp(7,)
[A A] A Tus=Taulr;)
[A Al B Typ=Typlr;)
(B B) A Ta= Tpgylr;)
(B B] B Tpp= Tgg(7;)
Al A [A Thus = Tapls;)
A] B [.A T‘:BE TAB(S;)
B] A {B "Tpa= Tpals;)
B] B [B TéBE TBB(S;)
A 7\ A] Toa=Tault;)
B [A A] TA’BE TAB(t;)
A (B B) Té,{ = Tpalt;)
B [B B] TEB = TBB(t; )
A A A Uppa = Uggulr,)
A A B Upap= Uygp(7;)
A B A Uspa=Ugap= Upsp(s;)
A B B Uapp= Uspa = Ugaa(t;)
B A A Upaa= Uian= Upyplt;)
B A B Upap =Ufpa =Uppsls;)
B B A UBBA = UBBA(’}'; )
B B B UBBBEUBBB("")

These enable us to express two of the two-point proba-
bilities in terms of the other three.

The third and fourth columns of Table II show the
limiting values of P, @, etc. at =0 and at r=o. At
7=0, the probability that one point is in A or B is p or
g, respectively, and the other is then certain to be in
the same cell and in the same material. At ==, the
two points have zero probability of being in the same
cell, and their material probabilities are independent.
[If the A cells have a maximum linear dimension L, and
the B cells a maximum linear dimension Lg, then P van-
ishes for »>L, and @ for > Ly, When v>L, and Lp,
both P and @ vanish, and the constraints (3.2) and (3. 3)
enable us to express P* and Q* in terms of R, though
not to replace P* by »*% and so on. ]

Finally, we consider the three-point probabilities.
These are shown in Table III. The first column is the
same as in Table I. The second column lists the sym-
bols that will be used for the probabilities, in the ab-
breviated notation S,, Tua, Taa, etc. and in the less
abbreviated notation S, (7, ), Taa(7;), Taa(s;), etc. Al-
though there are 22 different states, the probabilities
can be expressed by means of only 10 different functions
SA, SB’ TAAy TAB, TBA, TBB: UAAA’ UBBB: IJAAB; UBBA
by permuting the arguments. Among the probabilities of
states with the points in three separate cells, U, 4, and
Uppp are symmetric in all three variables, whereas
Upsap and Ugpy are symmetric only in s and ¢.

The values of the ten different functions in limiting
cases are shown in Table IV. These are based on the
principles (1) that when two points coincide, they are
certain to be in the same cell and the same material;
and (2) that when one point is infinitely distant from the
other two points, its probabilities and theirs are inde-
pendent. Under the conditions listed, the three-point
probabilities can be expressed simply in terms of the
two-point. Such cases as¥=s=0and r=s=«, {=0 or
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= peed not be listed specially; they follow from the en-

tries in Table IV by use of the further limiting values in

Table II. The limiting values of such functions as Tz
can be found by appropriate permutation of the variables
7, s, t.

The probabilities in Table III are subject to the con-
straints that they must add up to the correct two-point
probabilities of Table II. Thus the sum of the probabil -
ities of all states with points 1 and 2 in a single 4 cell,
namely S, + Ty4 + T4 5, must equal the probability P that
points 1 and 2 are in a single A cell: S, (r,)+ Tyalry)

+ T4p{r; )=P(r). By carrying out this addition for each
state of points 1 and 2, we get the following six
constraints:

Sp+Tan+Tap="P,

Sp+ Tps +Tps=@Q, 3.4)
Thn +Thn +Usan + Usap=F*, (3.5)
T3s+ Tes+Usps+ Ussa = Q%

Typ+ Tha +Usas + Ussa =R, (3.6)

Tha+ Tap+Ulap+Upssa=R.

The last two of these are not independent; one can be ob-
tained from the other by interchanging the arguments s
and #. The constraints obtained by considering the prob-
abilities for points 1 and 3, and for points 2 and 3, need
not be written separately; they can be obtained from the
above by permutation of arguments.

We can solve Egs. (3.4) for T,z and Tp,, and Egs.
(3.5) for U,z and Ugy,. Substitution of appropriately
permuted forms of the results in either of Egs. (3.6)
then gives a constraint which, by use of the two-point
constraints (3.2) and (3.3), can be simplified to

Sy +Sp +(Typ +Tas +Th4a) +(Tap +Ths +Ths)

+Upps +Uggg=1-(R+R’+R"). 3.7

In this relation between three-point and two-point func-
tions, those functions that are not themselves symmetric
in 7, s, and { occur in symmetric combinations such as
R +R' +R".

If the functions that appear in this constraint are
assigned arbitrary values consistent with it and with
the limiting values at 0 and «, the other three- and
two-point functions can be found from the other con-

TABLE IV. Values of the three-point probabilities in limiting
cases.,

Function Value at Value at Value at Value at
r=0, t=0, y=g=0%, s=t=%,
s=¢ s=r t finite 7 finite

Sulr,) P(s) P(r 0 0

Sgl(r,) Q(s) Q7 0 0

Talk7;) Px(s) 0 0 P(Mp

Tapl7;) R(s) 0 0 P(r)q

TBA(’V; ) R(s) 0 0 Q('r)p

Tpal7;) Q*(s) 0 0 Arlg

Upgalr,) 0 0 pP*(1) P*(np

Ugap(r;) 0 0 pPR®M) PXnq

UBBA(T;) 0 0 qR(t) Q*(‘V)p

Uggplr,) 0 0 q@*(h (Mg
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straints. The assigned values must also, of course, be
consistent with the general requirement that a probabil-
ity may not be less than O or greater than 1.

The constraint (3.7) can be put into a physically more
illuminating form. The probability that all three points
are in material A, without regard to their distribution
among cells, is

DIRA=Sa+Tup +Thp +T4y +Uyspap. (3.8)

Similarly, the probability that all three points are in
material B is

@32 =S5 +Tpp +Thp +Thg + Ugpp- (3.9)
The constraint (3. 7) may therefore be written
pizd +qin=1-(R+R +R"). (3.10)

Since Eq. (3.7) contains six three-point functions S,,
Sps Taar Tgp, Usas, and Upgy and one two-point func-
tion R, and since the only other constraints on these
functions are the conditions at 0 and « and the limitation
to the interval (0, 1), it is clear that there is wide lati-
tude in choosing them. Our aim, however, is to find a
simple generalization of the “symmetric cell material”.

The desirable property of the “symmetric cell ma-
terial” is that it reduces the integral®

gl

to an integral over a single cell, in some cases simply
related to the cell geometry. In Eq. (3.11), €/ =¢, ~E,
where ¢, is the dielectric constant (or other materlal con-
stant) at point ¢ and € is the volume or ensemble average
of €;; () denotes an ensemble average. For a two-phase
mixture, €¢;=¢, when point ¢ is in A and =¢, when it is

in B; é=pe, +gep; and if

ERGEEY r!ze r“dvsdv
2

92,023 12713 3.11)

8'=¢, —€g, (3.12)
then
e =0"%{p{3) ~p[pi2 +013 +p53°1+2p%,  (3.13)
where pi2) is as before and p{2’ is the probability that
points 1 and 2 are both in material A.- From Table II

and Eq. (3.2),
() _p+P*=p~R, (3.14)

and the integral I reduces to

=l [ 2B 5 0, 4. (5.19)
16112 82,023 Y7 273 : )
The term - 3% is contributed by the term containing
P52 in (3.13) (see Appendix).

In general, the integral in (3.15) extends over all
space; for the “symmetric cell material”, however
(Table I with g,=g,=g, etc.), in Miller’s notation,

PiN=0g+¢*r+n"+h")+ 9’2
=¢g+¢*(h+h' +h") +¢¥ (L -g—h -’ -k").
(3.16)

Since % can be replaced by f-g, pi3) can be expressed
in terms of two-point functions (whose contributions to
I can be intergrated in closed form) and the single three-
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point function g, which vanishes when any one of 7, s,
and ¢ exceeds the maximum linear dimension L of a cell.
The same result can be obtained by using ¢i3) instead
of pi3).

Our aim is to accomplish, for an asymmetric mate-
rial, a similar reduction of the region of integration to
a finite region.

In the formulas (3.8) and (3.9) for p}3) and q!3}, the
only terms that have the desired property of vanishing
when any one of 7, s, and { exceeds L, and Ly are the
terms S, and S;. Since the constraint (3.7) and the con-
ditions at 0 and = leave us considerable freedom in the
choice of the functions, let us try to impose on the func-
tions a further constraint that will reduce p{3} to an ex~
pression containing only S, and Sy and the two-point
functions R, R’, and R”. Such a constraint is

Tan+Tan+T4a +Usaa=kiSa +k,Sy
+8,(R+R"+R") +hy, (3.17)
where the k’s are constants to be determined. I (3.17)
is satisfied, it follows from (3.7) that an analogous
equation of the form
+ Thp+ Uggp=1:8, +1,Sp
+1,(R+R"+R")+1,

TBB + T'BB
(3.18)

must also be satisfied. To keep the calculation sym-
metric, we shall impose both (3.17) and (3.18) and shall
later determine the relations between the k’s and the I’s
by imposing (3.7). We shall call the constraints (3.17)
and (3.18) imposed constraints and the earlier ones
natural constraints,

The left member of (3.17) or (3. 18) is the probabil-
ity that the three points are all in A or in B, respective~-
ly, but not all in the same cell.

Equations (3.17) and (3. 18) take the following forms
in limiting cases:

At =0, s=¢:
P*(s)=kyP(s) + b, Q(s) + 2k R(s) + &y,

Q*(s)=1,P(s) +1,Q(s) + 21,R(s) + 1, (3.19)
at y=s=1o, ¢ finite:
PP() + pP* () =k [R(t) + 2pq] + ko,
(3.20)

gQ(t) +gQ*()=1,[R(t) + 2pg] + 1.

(The forms at {=0, etc., can be found by permuting the
variables. ) These in turn take the following forms in
further limiting cases:

At argument 0:
O=Fyp +kag *+ ko,
0=1,p+1g +1,,
PP =ks*2pq + ko,
@’ =l 2pq=1lo;

at argument o
p*=2ky" pq + ko,
q* =215 pq +1,,

(3.21)
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3.22
p3=k3'3pq+k°, ( )

q3=l3°3pq+lo.

These eight equations consist of four involving the %’s
and four involving the I’s; in each group, two equations
are identical. The three independent 2 equations give

kip+hag==-p*(1 +2q),

ky=—p. (3.23)
ko=p*(1+2q),

and the three independent I-equations give
Lp+lg=-g*(1+2p),
l,=-gq, (3.24)

10:q2(1 + 2#).
Once %, and [, are assigned values, the constants are
all determined. Equations (3.19) and (3. 20) and the two-

point constraints (3.2) and (3. 3) then enable us to ex-
press P, P*, @, and @* in terms of R if we so desire.

On expressing &, in terms of 2, and [, in terms of [,,
substituting the constants in (3.17) and (3.18), and in-
serting the results in (3. 8) and (3.9), we get

1(:;;: a+ kl)SA +q-1[ —kip 'Pz(l + 2‘1)]33

~p(R+R' +R")+p*(1+2q), (3.25)
g =p"[ -1, -q°(1 +2p)]S, + (1 +1,)Sp
-g(R+R'+R")+¢*(1+2p). (3.26)

Insertion of these in the natural constraint (3.10) gives,
after considerable algebra (in which the relation p +¢g=1
must be frequently used),

[(p-9)A +pq) + (kyp ~ 1,9)][qS , = pS ] =0. 3.27)

If Eq. (3.27) is satisfied, our aim is accomplished.
It can be satisfied by two methods.

The first method is to set

S /p=Sp/a=glr,s,t); (3.28)
then S, =pg, Sp=qg, and
k1S, +ESp=(kip +kyg)g=-p*(1 +29)g, 3. 29)

LS, +1,Sp=(p +1.g)g=—-¢*(1 + 2p)g,
by (3.23) and (3. 24). Only these combinations of the con-
stants are physically significant, not k&, and %, separate-
ly or I, and I, separately. By virtue of the other Egs.
(3. 23) and (3. 24), the imposed constraints (3.17) and
(3. 18) become

Tyu v Tyt Tyt UAAAZPZ(I +29)(1 ~g)

-p(R+R' +R"), (3.30)
Tpp+ Thp+ Tap+ Upgp=q°(1+ 2p)1-g)
~g(R+R'+R"). (3.31)

That the three-point probabilities should be those of
Miller’s “symmetric cell material” is a sufficient but
not a necessary condition for satisfaction of (3. 30) and
(3. 31); thus we can, if we wish, generalize the “sym-
metric” material somewhat by this method. Of more
interest, however, is the case of a material for which
SA/P ¢sB/q'
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The second method of satisfying (3. 27), available
when g,=S,/p and g,=S,/q are not equal, is to set
kup =lg == (p—q)(1 +pg). (3.32)

If 2, and J, are chosen so that this equation is satisfied,

we find from Egs. (3.25) and (3.15), with use of (3.14),
that

1 6}3
I:16112 ?{CAGA+CBGB}, (3.33)
where
C,=1+k, Cp=q[=kp-p*(1+29)] (3.34)
and
_ 3%S4 Ti2*Tus
GA“_[fazzaz:; i sz, (8.35)
BBSB Tiz* I'is
= —_— . 3.36
Cx f[azzazs riar s dvsdvy ¢ )

Alternatively, we can use instead of (3. 13) the equiva-
lent formula

regey==0"{gR -qle +qB +¢31+2¢°}, (.37

where the ¢g’s have the same meaning for material B that
the p’s have for material A. This gives formual (3.33)
but with

C,=p g+ +2p)], Cp=-(1+1,). (3.38)

The pairs of formulas (3.34) and (3. 38) are equivalent
by virtue of (3.32).

From Eq. (3.32), we may set

Pl +1+pg)=q, +1+pq)=Kpq. (3.39)
Then
k,=Kg-1-pq, lL,=Kp-1-pq, (3.40)

and K remains an arbitrary constant, subject only to the
condition that the resulting probabilities must all lie in
the interval (0,1).

The relation of G, and G, to Miller’s G, and G, is

G,=16wpG,, G5=161¢G,. (3.41)

4. ILLUSTRATIVE MODEL

In the previous section, the properties of our compo-
site material were defined in a formal manner. In this
section, it will be shown that such a material can in fact
be constructed by a straightforward procedure.

The procedure consists of the following steps: (1)
Divide the space by some random procedure into statis-
tically equivalent cells. (2) Assign each cell randomly
and independently to material A or to material B with
probabilities ¢ and 1 - ¢, respectively (we use the sym-
bol ¢ at this stage, reserving the symbols p and ¢ for
the ultimate one-point probabilities). (3) Divide each A
cell independently, by some random process, into two
subcells. (4) In each of the original A cells independent-
ly, select one of the subcells by a random and unbiased
method and change its material to B. The random pro-
cesses used must guarantee statistical isotropy and
homogeneity.
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TABLE V. Two-point probabilities for illustrative model.

State Probability Number of states Number of states

1 2 after step (3} after step (4)

[(e Il =t 2 2+1 =3

[(+) ()] n=n» 2 2+1 =3

()] ()] e=6(» 4 4+2+2+1 =9
B 15

The calculation of probabilities is facilitated by mod-
ifying the construction procedure to the following equiva-
lent one: (1) Divide the space by some random procedure
into statistically equivalent cells. (2) Divide every cell
independently, by some random process, into two sub-
cells. (3) Assign each of the original cells randomly and
independently to material A or to material B with prob-
abilities ¢ and 1 -~ ¢ respectively. (4) In each of the A
cells independently, select one of the subcells by a ran-
dom and unbiased method and change its material to B,
(5) In each of the B cells, remove the boundaries be-
tween the subcells.

After step (2) of the modified procedure, the two-
point probabilities are those shown in Table V, and the
three-point probabilities are those shown in Table VI.°
Brackets indicate cells and parentheses subcells: thus
[+ )][¢-)] means that points 1 and 2 are in the same sub-
cell of one cell and point 3 is in a different cell, where-
as [(-)(-)][(-)] means that points 1 and 2 are in different
subcells of one cell and point 3 is in a different cell.
The two-point functions are shown only for points 1 and
2; for points 1 and 3 we write ¢’ =¢(s), etc., and for
points 2 and 3 ¢”=¢(¢), etc. The two-point probabilities
are subject to the constant

c+n+6=1 4.1)
and the three-point probabilities to the constraints

utv+tw=¢g,

v+ +x=n, (4.2)

w +w" +x'+x"+y=140

and their permutations; the constraints (4. 2) are ob-
tained by equating the entries in Table V to appropriate
sums of entries in Table VI. If we choose as indepen-
dent functions ¢, 1, %, and v, we can solve Eqs. (4.1)
and (4. 2) and their permutations for the other functions;
this gives

9=1—§""7,
w=¢-u-v, (4.3)
x='n—v'—v”,
y=1=-(+~)-@O+~)+2u+2@+~)
and permutations of these equations. Here we have ab-

breviated the symmetric sums ¢ + ¢/ +¢”, ete., to¢ +~,
etc.

The third column in Tables V and VI shows the number
of states after step (3). In Table V, for example, the
state [(- +)] becomes, in this step, either [(44)] or [(BB)],
but the state [(-)][(-)] has the four possibilities [(4)][(4)],
[(@WI[®B)], (WG], [(B][(A4)], and [(B)][(B)]. The con-

ditional probabilities of these states, given the initial
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states, are ¢ and 1- ¢ in the first example; ¢*, ¢(1 ~ @),
¢(1 ~-¢), and (1 - ¢)? in the second.

In step (4) there is a further splitting: thus [(4A)] re-
mains unchanged or changes to [(BB)] with probabilities
L. [(4)][(A)] has the four possibilities [(4)][(4)], [((AN[(B)],
[(B)][(4)], and [(B)][(B)], each of probability %; [(B)][(B)]
remains unchanged with probability 1. The fourth col-
umn in Tables V and VI shows the number of states into
which each of the states enumerated in column 3 splits,
and the resulting total number of states. Thus in Table
V, the initial state [(-+)] has become, after step (3),
either [(4A)] or [(BB)]; after step (4), [(AA)] has re-
mained unchanged or changed to [(BB)], with probabil-
ities 3, and [(BB)] has remained unchanged with prob-
ability 1; the number of final states is indicated as
2 +1=3, Initial state [(-)][(-)] has become, after step
@), [WIW)], [WI[®B)], [B)][W)], or [(B)[(B)]. After
step (4), [(4)][(4)] has become one of the four states
[@][@)], [WI®B], [B][(A4)], [(B)[(B)] with probabil-
ities ; [(4)][{B)] has become one of the two states
[WI[B)], [(B)][(B)] with probabilities %; [(B)][(4)] has
become [(B)][(4)] or [(B)][(B)] with probabilities %; and
[(B)][(B)] has remained unchanged. Hence the entry in
column 4 is 4+2+2+1=9. The last entry in column 4
of Table VI, 8 +3:-4+3:2+1, is short for
8+4+4+4+2+2+2+1,

Step (5) consists merely of removal of the parentheses
in B cells.

The complete two-point table, after step (4) or (5),
contains 15 rows; the complete three-point table con-
tains 93. Since the construction of the tables is
straightforward, they will not be given here. The prob-
ability for each row is found by multiplying the proba-
bilities in Tables V and VI by the two subsequent condi~
tional probabilities [steps (3) and (4)]; then the various
probabilities for each final state must be added together.
The results, initially expressed in terms of ¢, can be
reexpressed in terms of the final one-point probabilities
p and g by noting that

z0=p, 390+ =-¢)=q, 1=-¢==0p-q); 4.4)

it is these combinations and powers of them that occur
in the formulas.

TABLE VI. Three-point probabilities for illustrative model.

State Probabil- Number of Number of states
1 2 3 ity states after step (4)
after step (3)
[(e ° )] u=ulr,) 2 2+1 =3
{(e o}y {e)] v=olr;) 2 2+1 =3
[¢) (o) (] '=v(s;) 2 2+1 =3
[(e) (o )] V=v(f) 2 2+1 =3
[(e 9] ()] w=wlr) 4 4+2+2+1 =9
)] [()] [« w'=w(s;) 4 4+2+42+1 =9
[(=)) [(- )1 w=wlt) 4 4+2+2+1 =9
[(e) ()] [(2)] x=xlr;) 4 4+2+2+1 =9
()] [(2)] [(2) x'=x(s;) 4 4+2+2+1 =9
[(=)] [(e) (o)) 2"=xt;) 4 4+2+2+1 =9
[(<)] [(2)] [(<)] y=3(r,) 8 8+304+3:2+1 =27
20 33
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The results of this calculation are as follows:

P=pg,

Q=pt~p-g)&+n),

Pr=p6, 4.5)
Q*=q"0

R=pn+pqb;

S,=pu,

Spg=qu-—-(p-q)v+~),

T,a =p2w,

T,p=pv+pqw,

Tpy=pv +pqw —=p(p —q,

Tep=q"w—q(p-q)x, (4.6)

Usaa=by,
Upaan=0"0' +x")+ 1%y,
Uppa=pa(x’ +x")+pg’y,
Upss=4".

It may be verified that these functions satisfy the
natural constraints (3.2), (3.3), (3.4), (3.5), (3.6), and
(3.7). They also satisfy the imposed constraints (3.17)
and (3.18), with

ky=¢* -1, 112—42,
k2= _pZ’ l2:p2 _1, (4. 7)
ks=-p, I;=-q,

=p*(1+2q), 1,=¢*1+2p).

The last statement may be proved by expressing each
member of (3.17) and (3. 18) in terms of the independent
functions ¢, 7, #, and » by means of (4. 3); the two mem-
bers are equal if and only if the coefficients of corre-
sponding functions are equal, and these conditions are
satisfied if the constants have the values (4. 7).

The values of the £’s and I’s are those of Sec. 3, with
K=1in Eq. (3.40).

With this model, since p=3¢, p is limited to the
range 0 <p <3, To get values of p in the range 1 to 1,
we may interchange the roles of the two materials,
splitting the B cells instead of the A cells. The formu-
las can be obtained from the preceding ones by inter-
changing A and B, p and g, k, and [,, &, and {,, k, and
1, and g, and I,. Equations (4. 6) change, but Eqs. (4.7)
are still valid, so that again K=1. For p=3, the two
materials are treated alike: to construct the model in
this special case, one divides the space into cells, di-
vides every cell into two subcells, and then in each cell,
randomly and independently, assigns one subcell to A
and the other to B.

Comparison of Eqs. (4.6) with Table I shows distinct
differences from the probabilities assumed by Miller.
According to Miller, UAM: Uaas' Upsa: Uppp=0": pPq:
Pq:q% our Uy, and U spa €ach contain an extra term
not present in U, ,, and Ugg,y. According to Miller,
Typ: Typ=q:p, and Ty,: Tpp=piq; our T,pand Tp,
each contain an extra term py. It is interesting that
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these differences persist even when p =4, even though

in that case Sz=S,, Tys=T,4, Tpa=Typ, Uppp=Uysa»
and Ugy, =U,, 5 that is, even though the material is
then completely symmetric.

This example demonstrates that the type of material
defined in Sec. 3 is not a mere formal abstraction but
can in fact be constructed by definite procedures.

5. DISCUSSION

The foregoing sections demonstrate that although
Miller’s generalization of his “asymmetric cell mate-
rial” is not self-consistent, a self-consistent generali-
zation, based on the requirement that a certain integral
reduce to one over a finite range, is possible. The il-
lustrative model of Sec. 4 is a specific realization of
that generalization. It is subject to this criticism: It
may owe its success to its having started with material-
independent cell probabiliites. There has been no de-
monstration that the desired reduction of the integral is
possible when the construction procedure begins with
geometrically different processes for forming cells of
different materials: for example, with the process de-
scribed by Miller?, Sec. 2D, in which spherical A cells
and aspherical B cells grow from randomly distributed
seeds,

To the extent that this generalization succeeds, it
suggests that two-phase mixtures in which the integra-
tion range reduces to a finite one owe that property not
to the fact that they are “cell materials, ” but to the fact
that their two- and three-point probability functions
satisfy certain rather special relations.

APPENDIX: INTEGRATION OF TERMS IN
/ DEPENDENT ON TWO-POINT FUNCTIONS

Because of the presence of the operator 32/52,3z, in
(3.11), the only terms in (3. 13) that contribute to J are
the three-point term 5'°p{3} and the two-point term
—5"%ppiZ). We therefore consider the integral

0 f(”’zs) rlz r13
J’f 02,02, Yo7 dv4dv,.
The following integration procedure is not the shortest
(cf. Miller!, Appendix B), but it is straightforward and

requires no special tricks beyond the usual ones of in-
tegral calculus.

(A1)

In fixed xyz axes, with center at point 1, let the
spherical coordinates of point 2 be (», 6, &); then

dv,=7r?sin@drd©d®. (A2)

Let x'y’z" axes, with center at point 1, be oriented with
Euler angles® &, @, 0, so that r,, is along z’. In these
axes, let the spherical coordinates of point 3 be (s, 8, ¢);
then for given r,,

dv,=s*sin6dsdéde, (A3)

where 6 is the angle between r,, and r, in Fig. 1. The
factor ry, v /r575 in (Al) is (cos@)/r2s?%; the factor
3%f(ry,) /02,02, is

-]

A4
02,02, 3 t t2 (a4)
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where
t*=rf=r?+s* -2rscosé (A5)
and
23 =24 ~ 2, = (= x} 5in@ + 25 c05€) - » c0sO
=s(-sin®@sinfcos¢ +cosOcosf) —-rcos®;  (AS)

a subscript ¢ indicates differentiation with respect to ¢.
Since the limits (0 to « for » and s, 0 to 7 for © and 9,
0 to 27 for & and ¢) are all independent of the variables,
the integrations over the six variables chosen can be
performed in any order.

The integrations can be carried out as follows: (1)
Integrate over &, ©, and ¢; the resuilt is insertion of a
factor 812 and replacement of 22, by 3¢2. 2) For given
r and s, change from 6 to ¢ as variable of integration;

t goes from |7 -s| to »+s. (3) Invert the order of in-
tegration over { and s, and carry out the integration
over s; it goes from | -¢| to »+¢, and the result is
zero when ¢>#, so that t may be integrated from 0 to »
rather than from 0 to «. (4) Invert the order of integra-
tion over ¢ and 7, and carry out the integration over 7;
the result of this step is

L=-4a ["[tf, () + 2, @] at. (am

(5) Integrate the first term by parts. If f(¢) and £, (¢) are
continuous and if #,(¢) =0 as £ =0 or «, this gives
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I,= - 16/} £(=) - £O)]. (A8)

In the application to (3.11), flr,,) = — 6%ppf2, so that
f(°°)= - 6’31)3, f0)=~5"3p?%, f(«) —f(0) = 8'%p?q; this leads
to the last term in (3.15).

If () and £, (t) are zero for > R and continuous for
t<R, and if #,(t) =0 as ¢ ~ 0, the term f(=) in (A8) is
replaced by Rf,(R - 0)+f(R - 0). For validity of Eq. (A8)
in this case, Rf,(R —0)+f(R - 0) must vanish; this will
be the case if, for example, both f(¢) and f,(#) approach
zero as { approaches R from below. Throughout the text,
it has been assumed that one or another of the sets of
conditions necessary for validity of Eq. (A8) is satis-
fied; if this is not so, the results may require revision.

IM.N. Miller, J. Math. Phys. 10, 1988—2004 (1969).

M.N. Miller, J. Math. Phys. 10, 2005—2013 (1969).

3M. Beran, Nuovo Cimento 38, 771—782 (1965).

4Obviously the statistical properties of boundary cells must
differ from those of internal cells, since the orientation of
the boundary imposes geometric constraints. We assume
throughout that the specimen is so large that the special prop-
erties of boundary regions are unimportant.

5The notation in Tables V and VI differs from that in Tables
I-III in one respect: Brackets have been placed around a
point that is in a different cell from the other point or points,
The purpose is to make explicit the relation of cells to
subcells.

g, T. Whittaker, Analytical Dynamics (Cambridge U.P.,
Cambridge, 1927), 3rd Ed., pp. 9—10.
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We study the problem of obtaining the bounds on the modulus of one element of a finite unitary
matrix once the values of the moduli of a set of other elements are given. The problem is solved in
simple cases, and indications of more general cases are given. This question is interesting from a
physical point of view since it leads to direct inequalities between sets of partial waves. It would also
be useful to extend this kind of results to the continuous matrices where inequalities on cross

sections could be obtained.

1. INTRODUCTION

Unitarity imposes strong restrictions on the S matrix
elements, but due to its nonlinear character these
restrictions are usually difficult to obtain. In this arti-
cle we have tried to obtain bounds on the modulus of one
element of S once some set of moduli of other elements
are known. Only few results have yet been obtained in
this field where the S matrix is infinite dimensional.

As a first attempt to explore the problem we have
focussed our attention on the simpler case of a finite
unitary matrix. This, in itself, is already a rather dif-
ficult task. We have succeeded in solving it in a few
cases only. Some of them, we hope, may become
physically interesting.

We have restricted ourselves to matrices which are
symmetrical (i.e., equal to their transpose). Indeed
time-reversal invariance is probably a good symmetry
of strong interactions and implies that

<fou! |iin) =<flnls ’iln>=<ilnr,s IfinT>=<ioutT|f1nT)’ (I' 1)

where the state {aT) is the time-reversed state (spin
and momenta reversed) of |a). By choosing the basic
states |a+aT) and ila - aT) one sees easily that the S
matrix is symmetrical due to (I. 1). Henceforth we will
always work in the latter basis. Thus

S=8* (t=transposed). (1. 2)
Il. LAGRANGE FORMULATION OF THE PROBLEM.
NOTATION

Let S be a N-dimensional unitary symmetric matrix
with elements s;

§§*=8*S=1 (+=Hermitian conjugate)
S=5¢

(I. 1)
(1. 2)

The problem we want to solve is to obtain the bounds
on the modulus of one given element s, of S once the
moduli of a set 9’ of J-1 elements of S are given,

a,=lsy,l, (Lieg. (I 3)

This problem can be formulated by using the method
of Lagrange multipliers. Let A be the matrix of
Lagrange multipliers related to the unitarity condition
(I1. 1). It can be chosen to be Hermitian

A*=A. (II. 4)

Let = be the complex matrix of Lagrange multipliers
related to the symmetry condition (II. 2). It can be
chosen to be skewsymmetric.
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=

ta

(IL. 5)

Let finally Y be the real symmetric matrix of Lagrange
multipliers related to the moduli conditions (II. 3).
Explicitly
¥;;=Y,, real arbitrary for (i,j) e g',
¥,,=Y,=1 for the special element (p, q), (II. 6)
v;,=0 for all other elements.

For convenience the set of elements for which y;, can be
nonzero will be denoted by ﬂ

3=4+@ 9,

then J is the number of elements of 9

(I.7)

To find the extremal values of |s,, |, one has to ex-
tremize the following action:

A =Tr(A(S*S = 1))+ Tr(EXS - ) + Tr(=(S* - S*)

+ 2-a?
“Z':j) y“(|sui a3;)

(1. 8)
(* =complex conjugate).

Introduce the symmetric matrix X with elements x,

(1I. 92)

(II. 9b)

Note that (II. 9a) is not in the form of a matrix product.
The derivative of 4 with respect to s,; or s,,* gives the
matrix equation

Xy =¥4;8y (¥4, real),
X=Xt

SA-25+X=0. (I1. 10)
The symmetrical part of this equation is

SA+A'S+2X=0, (. 11)
which in turn implies

SX*=X§* (. 12a)
or equivalently

S'X=X"*S. (1. 12b)

The = matrix can then be chosen to be zero. Then

A=-8X, ==0. (I1. 13)
The crucial step to be performed is to obtain a solution
of the equations (II. 12) and (II. 1-2-3) with the restric-
tions imposed by (II. 9), namely that x,, and s, have the
“same phase”, i.e., they differ by multiplicative real
numbers.

Copyright © 1974 American Institute of Physics 1525
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The conditions imposed by the Lagrange method can
be divided into two classes.

The first class contains the conditions of symmetry
and unitarity of S, of symmetry of X as well as equation
(II. 12). These four sets of equations are invariant under
transformations of the form

X=UXU!, S=USU!,

where U is an arbitrary unitary N XN matrix.

(1. 14)

The second class of conditions contains the restric-
tions on the moduli of S (II. 3) and the phase condition
(II. 9). These equations are in general clearly not in-
variant under the transformations of equation (II. 14).
However if one restricts oneself to the special unitary
matrices which are diagonal

U,;,=0,, exp(iy,). (I1. 15)
The phase and the moduli conditions are also invariant.
This freedom will be used subsequently since it allows
to choose some phases arbitrarily.

It will often be convenient to state our results very
symmetrically by considering the J-dimensional space
& spanned by the a,,=1s;! [(i,j)e ¢]. Let |/ be the J-
dimensional volume of ¢ defined as follows: a point a,,
((4,7) e ¢) belongs to |/ if, and only if, there exist both
a system of phases ¢,

$;;= 8y exp(i(ﬂu), (%])Eﬂ (II 16)
and a set of complex numbers
Ser (B D& G (1. 17)

such that the full S matrix is symmetrical and unitary.
In this language our problem is equivalent to finding the
(J-1)-dimensional surface B which is the boundary of
volume [/. As will become clear later, this surface }
will often be composed of several different smooth
pieces which intersect each other on lower dimensional
surfaces.

It will be useful to subdivide the matrices X, S, ...
into submatrices characterized by partitions {n} of N.
Using upper indices to specify those submatrices, we
write for example

X1 xiz xi8
X2l x22 X3
™ M2 -\ X3! x% x93 (I1. 18)
My, Mgy e e ‘

where X*! has dimension (#,Xm,), X*?* dimension (n,
Xm,), and X!/ dimension (n,Xm,).
N=Z n,=Z m,. (I1. 19)

When n,=m;, only one set of indices will be used,
X(n,,n,,...). In the next section the case in which all
X(m,n, p) except X*? is zero will be treated explicitly.
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Ii1. FIRST CASE
A. Presentation of the problem

Let all matrices involved in the problem have a de-
composition (m, n, p). In particular

Sll Siz §i3
S(m’ n’p)_: Sth 522 st
Slst SZSt 833

(111, 1)

The problem we shall try to solve explicitely in this
section is to obtain the bounds on the modulus of one
element of S'? once all the remaining moduli of S*? are
given and all the other elements of S are completely
arbitrary or unknown.

According to (II. 6) and (II. 9) the general form of X is

0 X 0
X(m,n,p)=|X2" 0 0}, (1. 2)
0 0 0

which means that the set g of elements (¢, j) for which
9y may be nonzero is given by

g={E,N:1sism, m+1<jsm +n. (I1I. 3)

B. Solution of the first-class conditions

We now present the solution of the first class of con-
ditions. Since we have in mind the second part of the
problem it is useful to restrict ourselves to the special
transformations (II. 14),

v 0 0
Um,n,p)={ 0 v 0], (111 4)
0 0 U3
which have the nice property to leave the set ¢ (X'2+0)

globally invariant. As the detailed proof of the re-
sulting form of X2 and §'2 is rather involved, we have
deferred it to Appendix B. The relevant results only
will be given here.

To be definite let us take # >m. The matrices X** and
5'2 with m lines and n columns can be “pseudodiago-
nalized”, i.e., their first m columns form a square
diagonal matrix while their (n —m) last columns are
identically zero. The diagonal elements of X**(x,) are
real. The diagonal elements of 5'%(s,) are the real posi-
tive square roots of the real positive eigenvalues of the
matrix (S'2§'2+),

It is easy to see that the volume |/ in the J =nm-di-
mensional space ¢ defined in Sec. II can then be char-
acterized by the following requirement: a point a,; be-
longs to |/ if, and only if, there exists a system of
phases ¢,

sii= a;,explie;;) (1I1. 5)

such that all the eigenvalues of S'25'%* are smaller than
or equal to one:

s? <1, (I11. 6)
Thus all diagonal elements of §*2 must be larger than or

equal to zero, and smaller than or equal to one. If S*?



1527 G. Mennessier and J. Nuyts: Some unitary bo_unds

defined by (III. 5) satisfies (III. 6), it is clear that the
matrix

$12=) 8% (0 <x<1) (II1. 7)
leads to eigenvalues

s 2=22 s?.. (1. 8)
Thus

Pryoposition 0: If a,, is a point of |/ then rg;, (0 <) <1)
belongs also to |/.

It is also shown in Appendix B that the x; and the s,
are correlated in the following manner: for the diagonal
elements of §' which are equal to one the corresponding
values of X*2 are arbitrary. For all the diagonal ele-
ments of 32 which have the common eigenvalue s
(0 < s< 1) the values of X*? are either zero or appear by
pairs of opposite signs. Finally, for the elements of
§'2 which are zero the corresponding values of X2 are
again arbitrary. Explicitly

Proposition 1; The most general solution of (II. 1),
(II. 2), (II.9b), (II.12), and (II.14) for X' and S'? is

S3(ny, Mg, Mgy Wy, Ny o < v 21— 1)
n Ny, My Ny By ... B~
sl
S2
—pu Sy 22 t’ (III. 9a)
82
0
X12(ny, 1y, My, My, My, . 0= M)
n, N, Ny Ny Ny ... =M
xl
X, %0
—pyu -x, U2t (1. 9b)
0
x3

where the blocks labelled 1, 1>s,>0, 0,...;x,, x,#0,

. are proportional to the unit matrix of the corres-
ponding dimension (r; or »}) with coefficient
1,s,,0,...;%,,%,,... The unitary matrices U™ (mXm)
and U%(nXn) are arbitrary.

C. A set of solutions of the second-class conditions
1. Generalities

We now turn to the problem of imposing the restric-
tions (II. 3) on the moduli of the elements of S*? and the
phase conditions (II. 9a) between S$* and X*2. A matrix
which satisfies these conditions will be called extremal.
We have succeeded in solving this problem in a few
cases only, namely when only one x,; of X2 is different
from zero. In Sec. IV we will show that these cases
exhaust all the possible boundaries when m =2, which is
a physically interesting situation.

Let us first imagine that we take for the matrix ele-
ments of $12 -
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si2=a, explio;,) [(,)e 9], (111 10)

where ¢,, is a set of arbitrary phases. It is clear that
the eigenvalues of S S§'2* (i.e., s?) will in general be all
different from each other, zero, and one. QOur general
Proposition 1 of Sec. II. B2 would then imply that the

x,; be all equal to zero (X=0). This means that this §**
does not belong to an extremal matrix except if s;2=0.
Indeed y, has to be equal to one, and

0=qu=sﬁy“=s;i=0. (II1. 11)

This latter case (5;2=0) corresponds to the minimal
value possible for the modulus of sfq. This extremum
can be reached provided that the phases in (III. 10) can
be chosen in such a way that the eigenvalues of $*2 512+
are all smaller than one (and s;2=0). When the q,, are
sufficiently small such a type of solution always exists.
This result can then be summarized in :

Proposition 2: The hyperplanes a,,=0 are pieces of
the (mm - 1) dimensional boundary A of volume |/.
There exists a neighborhood of the origin which is
entirely contained in |/.

According to the characterization of volume |/ dis-
cussed in Sec. IIIB2, all other types of boundaries are
related to the maximal possible value for the s;, name-
ly one. Following Proposition 1, X can then indeed be
different from zero. Thus

Pryoposition 3: Except the case of Proposition 2, a
necessary condition for S*2 to be extremal is that $'% 5%
has at least one eigenvalue equal to one.

As we have already said at the beginning of this sec-
tion, we have been able to obtain the explicit extrema
of |s,,| only when one x,; is different from zero and when
the corresponding value of s is equal to one. Unfortu-
nately, since, as is well known, the Lagrange param-
eter method may provide saddle points, and since we
have not been able to solve the phase conditions when
more than one x, is different from zero, we cannot
guarantee that we have obtained the true bounds. When
m =2 however, we will show that the discussion which
follows exhausts all possible types of bounds.

2. x, only is different from zero. U} +0and U¥# +0

Let X2 =y, the only non-zero element of X!2, and let
the corresponding S}2 be equal to one.

According to (II. 9a) and (II. 14), X2 and $'2
512 — Ull g12 U22t

must have the “same phase. ”

X12 _ Ull 5’(12 U22t (III. 12)

At this point it is useful to exploit the freedom con-
tained in equation (II. 15) in order to choose Ut} and
U2 real. Since then

X2 =y L 2 (1L, 13)
is purely real, the phase condition implies that S** is
purely real. One obtains then the matrix elements sﬁ
of S'2(¢) by

(I0I. 14)

12 }
S1; =€ Ay
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where e={¢;,} is an arbitrary set of signs. The extremal
values of |s, | are given by the extremal S'%(¢), i.e.,
those for which §*38!2* =§12 52t hag one eigenvalue equal
to one

det (S12() S*¥(e) ~ 1) =0 (111 15)

and the other eigenvalues smaller or equal to one. One
then may choose U** and U*2 to be orthogonal matrices.
In short

Proposition 4; Certain pieces of the boundary A of
|/ are of the form (III. 15).

3. x, only is different from zero. General case

The conclusion of the previous section does not hold if
some elements of X'* are identically zero. Indeed, no
phase condition then exists on the corresponding ele-
ment of $'2, Remembering (III. 13) this situation implies
that some U}l and/or some U% are zero. By re-label-
ling the lines and columns of $*?, it can be assumed that
the (m ~ k) last elements of U}l are zero as well as the
(n=1) last elements of U}}. The matrix X' can then be
written

Xm(k,m—k) _ <1=X12 0 )
i,n-1 0 0
where the amputated *X*? is a (kX[) nonzero matrix.
In a similar way the amputated *'S$*? is obtained from S?

by suppressing the (n —1) last columns and the (m ~ &)
last lines.

(I11. 16)

It is quite obvious in view of the discussion of Sec.
MIC1 that |s,,| has to be chosen inside '$'?. Otherwise
185! would be zero. On the other hand, the general
theory of Lagrange multipliers tells us that when one of
the multipliers y,, is zero, the extremal value of s, |
does not depend in general on the precise value of the
corresponding a,,. Indeed the bound of |s, | depends
only on the values of 115’2 when this type of solution is
realized. In Appendix C, we show that 15*2 13§ which
by (III. 13) is real has an eigenvalue one and that the
equation

det(“Sm(E) 11812 t(é) — 1) =0 (III. 17)

represents a set of possible boundary values for [/
Since this type of boundary does not exist for m =n=2,
but is present in many other configurations, we con-
clude

Proposition 5: In almost all cases, certain pieces of
the boundary of |/ are of the cylindrical form (IM. 17),
where 11812(¢) is an amputated part of S*¥(e).

V. APPLICATION OF THE FIRST CASE: m=1,2

As an illustration of the results of the preceding sec-
tion, we here present the general solution of our prob-
lem when 52 consists only of two lines (m =2). Indeed
the case m=1

12_(ol2 12 al2 12
SH¥=(s13, S13) S1ar -+ +» S1ona

is completely trivial since our Proposition 4 iniplies
that any one of these elements is maximal if
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n+l
Ea§(= 1,

i=

(v.1)

i.e., when this line saturates unitarity. Inside the case
m =2 it is useful to distinguish two subcases n=2 and
n=3.

A.m=n=2

When m =n=2 $'% has four elements

Si2 (313 314\)‘
Szz  Saq
The extremal S*2 can be classified according to the
eigenvalues of S $¥¥* or equivalently S'2.

(Iv. 2)

When one of the values of §*2 is one, the boundary of
Proposition 4 is given by

det(S*2(e) S'2t(¢) - 1) = 0. (Iv.3)

As can be seen directly, the only relevant sign among
the €;, can be chosen to be €,,, and €,=¢€,=€,=1.
Hence (IV. 3) describes two surfaces only. The surface
€,==1 is the desired boundary of volume |/ since it is
always exterior to the surface ¢,,=+ 1 (application of
proposition 0).

When the two values of §?? are equal to one S*? simply
is a unitary matrix. Using the freedom of phases (II. 15),
S$*2 can be chosen real and is then a surface of lower
dimension (2 instead of 3) entirely contained in boundary
(Iv. 3).

When one of the values of §!2 is zero, the two lines of
512 gre proportional and

g3/ O3 = Oyy/ Ay (Iv.4)

A23

0.5 DB

A13

FIG. 1. Bounds on a,; as a function of ;3 when ay, and a,, are
fixed (here afy=V -—a? =0.8, af;=v1i- a§4= 0.9). The shaded
regions are those which are excluded by the full requirements
of unitarity compared with the trivial bounds a;; =a°; (vertical
line from B) and a,3=a§; (horizontal line from A). The ellipse
starting from C and ending in D {(the true bound) has equation
det(S'2§12t =~ 1) =0, i.e., (a},+a}y—1ad;+ad,— 1) = (@309
—ay4a,)* =0, The dotted line is the hyperbola ;3.3 =ayay =T,
while the circle e}y +a%; =1 is another trivial bound.
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A23

0.5

A13

FIG. 2. Bounds on a,3 as a function of aj; when ayy, a,,(i
=4,...,N) are fixed. Here 7 =0.346, 1°=0.15, af;=0.835,
and a§;=0.707, we are in the case 0 <7~ <7 <afjaj;. The
shaded regions are those excluded compared with the trivial
bounds a;3=af; (vertical dotted line) and a,3=a§; (horizontal
dotted line). Remark that the parts of these straight lines be-
tween the two hyperbolas a,3a,3=7" and a@,3ay3=7* are true
bounds of the domain. The ellipses do not touch the circle

aj;+ag;=1, the other trivial bound any more.

The maximum occurs when the other value of 5!? is one,

i.e., when

@+ @y, + a5, + a3, =1.

(Iv.5)

Equation (IV. 4) together with Eq. (IV.5) is of dimension
2, and is again entirely contained in boundary (IV. 3).

A23

0.5

A13

FIG. 3. Bounds on ay; as a function of a;; when ay;, a,,(i
=4,...,N) are fixed. Here 7=0,49, 7~ =0.173, af;Z0.707,
and a§3=0.632, we are in the case 0 <7~ <afaf; <. The
shaded regions are those excluded compared with the trivial
bounds a,3=af; and'ay; =a§;. Remark that the parts of these
straight lines between the hyperbola ay3a,3 =7~ and the point

(af3, afy) are true bounds of the domain.
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A23

0.5

0.5

A13

FIG. 4. Bounds on a,; as a function of a;3 when ayy, ay(i
=4,...,N;N>5) are fixed. Here n*=0.324, n"=—0.173, a3
=0.835, and a§3=0.707, we are in the case 7 <0 <n*<afyaf,.
The shaded regions are those excluded compared with the
trivial bounds a;3=af; and ay;=af;. Remark that the parts of
these straight lines between the hyperbola (a;3a,;=7*) and the

axis are true bounds of the domain.
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The surface (IV. 3) (¢,,= - 1) is conveniently repre-
sented by an ellipse in the a,, a,, plane. (See Fig. 1).
This corresponds to the intersection of the four-dimen-
sional space of the a,; by the hyperplanes |s | =a,, and
ISg4] =a,,, two given constants such that a?,+ a2, <1.
All points inside the ellipse are allowed points of vol-
ume |/. The ellipse is tangent to the straight lines

ay,=(1~ af4)1/2=afs,

at the points where

—————

~—.

A23 o

Aye=(1~ a§4)1/2=a§3

0.S

(Iv.6)

0.5

A13

FIG. 5. Bounds on a,; as a function of a;3 when ay; and a,,(
=4,...,N;N>5) are fixed. Here 7" =0.52, m=—0, 245, af;
=0.707, and af;=0.632, we are in the case 1" <0 <afzaf; <7*.
The bounds on the domain are the trivial straight lines a;;3=af;
and a,3=a$;,
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)3 Qa3 =0y, 0y =TT, (.1

where 7 is introduced for later convenience. These
points (corresponding to surfaces of dimension 2 and

not 3 in ) are the only remnants of the case of proposi-
tion 5 corresponding to S!2 amputated of its first or
second line. Finally the ellipse is also tangent to the
circle

aly+ a3, =1 (IV. 8)

another remnant of S'? amputated of its second column.
B.m=2,n>2

When m =2 and n> 2, S*? consists of two lines

Slz — (813 Sl4 315 fee S1n¢2). (IV. 9)

s23 824 325 cee szm-z
When the value of 5!2 is one, the form of some bound-
aries is, as usual

det(S*2(e) S'2¢(€) = 1) = 0. (IV. 10)

In the plane a,,, a,,, once all the other a’s have been
fixed, (IV.10) is represented by ellipses or hyperbolas
which are tangent to the critical straight lines

n+2
_ _ 1/2_ ,c
(a) a;3=(1 ? a1;) ' ?=af, (Iv.11)

n+2
(b) ay,=(1 —? @ '?=ag,.

At most two of these ellipses are relevant. Indeed
(IV.11a) and (IV. 11b) are of the form of equation (III. 17)
related to S'2 amputated of one of its lines. So that part
of the lines (IV. 11a), (IV. 11b) are bounds of domain //.
For these later bounds to appear, according to (C. 13),
one must be able to find phases such that the line which
has been removed from S*? is unitary orthogonal to 'U?2,
In this case *U?? is simply the remaining line in the
amputated S**, [Technically one uses (C. 3) and (C. 6)
with U™ =0 being a consequence of unitarity for U*!].

Here we simply describe the final result. As sug-
gested by (C. 14), let 7* and 7~ be defined as follows:

n+2
TT+:iZ=; Ay; 04 (IV. 12)

2
T =0y,05;,= ), ;0 (IV.13)

i=4
i#l

where a,, a,, is the largest of the products a,; a,; (i

=4,...,n+2). Remark that, whenn=2, r*=7"=7
(Iv. 7).
Four cases occur whether
mZatal, w7 20. (IV. 14)

Specific examples are drawn in Figs. 2—5.

V. FURTHER STUDY OF DOMAIN ¥ IN THE FIRST
CASE

In this section, we study the relations between a
matrix S!2 and the matrices which are contained in it
from the point of view of our problem.

Consider the decomposition

812: llslz 12512 . (V. 1)
31812 22812
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First let us remark that if a matrix S*? is unitarizable,
then evidently any of its submatrices is unitarizable.
This shows immediately that, if S'2 has all its pseudo-
eigenvalues smaller than or equal to one, i.e., if

1-S12gi2+ >0 (V.2)
is a semidefinite positive matrix, then for any am-
putated matrix 152

1 —1glz g2t > . (V. 3) ‘

Inversely, one may ask what are the conditions to be
fulfilled by *'§'2, 125'2  and 2!$'? for S™ to be unitariz-
able by the adjunction of a matrix 225!2, When ?'$*? and
12612t have one line only, the necessary and sufficient
condition for the existence of a number 2252 is given by
the theorem.

Theovem: Let A= (182, 12512) and Bt = (11§12t 21512¢) pe
given complex matrices (2'5!? and 25'%* one line only).
If a,=1-AA" is a positive matrix, and if det(1 — BB*)
is positive, then there exists a number 225'% such that
S js unitarizable.

Proof: First we show that the conditions on A and B
imply the existence of a number 225!? guch that

det(1 - S*25'2*) >0, (v.4)

Then we deduce that 1-S$'25*2* ig positive, thus that §*?
is unitarizable.

Writing 1 — S2S5'2* in the form (m -1, 1),

1-sger— (1 % (V.5)
a;  a,)
we find [see(D. 9)]
det(1-S'252*) = (a, - o} a}* a,) det . (V.6)

In this formula we are allowed to use a;' since a, is
positive. Consequently det «, is also positive, and (V.4)
becomes

a|22312|2 b 22612 4 px22g12* L o 0, (V.7
where
a=1+ 12312# a;l 12812
b= 12812+ a;l 11512 21512+’ (V. 8)
c=-1+ 21312 21512+ + 21512 11812+ a;l llsl2 215120.
A solution 2!8* of Eq. (V.7) exists if
1b|2—ac>0. (ch)

As is shown in Appendix D, this condition can simply be
written as

det o, det(1 - BB*)> 0, (V.10)
which is true by hypothesis.

Finally, to prove that 1 -S$'25'2* ig positive, let us
consider an arbitrary vector V, and
MZ V'(l - 812 512+) V. (V- 11)

Decomposing V!=(V{, V!), where V, is a number, one
shows easily that M is always positive. Indeed
M=Via,V, + Vio,V,+ ViV, + Via,V,. (V.12)

Using the inequality a,> o o' a, (V. 6), we write
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M>(Viad/2+Vapa:t?) (al/?V, +at’?a,V,)>0
(V.13)

which is clearly positive for any V.

VI. SECOND CASEr
A. Presentation of the problem

Let as usual all the matrices of the problem have the
decomposition (m, n, p)

Sll Slz Sl3
S(m,n,p)=| s12¢ 522 3]
Slst 323: SSB

(VL. 1)

The problem we would like to solve is to obtain the
bounds on the modulus of one element of S** once the
moduli of all the elements of S!2 are given. We have
succeeded in giving the general solution of this problem
when m =2 only.

According to (II. 6) and (II. 9) the general form of X is
Xll X12 0

X(m,n,p)=|X** 0 0}
0 0 0

(VL. 2)

where X! is a m Xm symmetric matrix whose only non-
zero elements are those corresponding to the special
element s, of S''. The possible forms are either

%, 0
XY1,m=-1)= )
0 0

X3 =811 (VI. 3)

or
Xy O
X1,1,m=-2)=|x, 0 0) x,=s,  (VL4)
0 0

In Appendix E, we have solved with some details the
problem when m =2 and p=0. We next present the re-
sults of this appendix and some indications of the more
general problem.

B. Some solutions of the problem whenp =0
1. Real solution when m is arbitrary

Let a;, (i=(1,...,m); j=(m+1,...,m+n)) be the
given moduli of st . Let €, be an arb1trary set of signs
and let

s (i=1,...,m; j=m+1,...,m+n)

(VL. 5)

1= €0

the elements of S'%(e).
A system of extremal solutions is obtained by

Proposition 6: Let A(€) =(S™, $'?) be a real matrix. It
is extremal if
A(e)A¥e)=1,,. (V1. 6)

This is not difficult to show by using the method out-
lined in Appendix E. In this case all matrices involved
in the problem are real, and the phase conditions are
satisfied trivially.
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In order to obtain explicitly the extremal value of the
element |s, | belonging to S, one may use the following
method.

(i) Choose a system of € and compute the eigenvalues
of $'2(€) S*?(¢), namely s3. The system (¢) is allowed if
all s'j’, are smaller than or equal to one.

(ii) Compute the orthogonal matrix U**(€) which diag-
onalizes S$'2 §'2t,

(iii) Choose ¢, (i =1, m) and let the diagonal ele-
ments of the dlagonal matr1x §'1(¢) be

ci=e,VI=s2. (VL.7)
(iv) The modulus a,[e) of the element s, of S**(¢) com-
puted from

11 — Ull §11 Ul.lt (VI. 8)

is an extremal value.

2. Other solutions when m = 2

When m =2, we have shown in Appendix E that some
trivial bounds can be reached which are not of the form
of Proposition 6. In these cases the extremal matrices
S are indeed complex.

The explicit forms of these bounds are of two types.

n+2
(1- Z; azl’f)l/z 0
Sll — i=3 ned . (VI. 9)
0 (1 -g; a;)

A122

0.5

\

/ 05 Tp2

FIG. 6. The curve of a}, as a function of 7 once o; and o, have
been fixed. Here 0;=0.6 and g,= 0.2. The vertical dotted line
has equation m=(1-gy)(1~ crz) and the horizontal one has aly
=min(l1-0y,1~0y). Let *=%}2a,,a,; and 1 =ay;a,;, — " 20140 ay,

7
(@y,09; > aya,; for all §). The intersection of the curve with 7

=7* or 7=7" determines possible upper and lower bounds for
a}y.
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A122
\\
N\
/ Z
///% /.
, 0:3 A132
7(a) 0.59 0.33 0.80
A122
ol
] 0.2 A3
7(b) 0.85 0.18 0.30

FIG. 7. Example of bounds of a}, as a function of af; once a;;, ay; and a,4 have been fixed. Remark that the straight lines a,=1
—ay3—a} and a}, +af;=1—a}, may be parts of the true bound of the domain.

n+2
._0_.__ (I—Z; @)
=l s w2 ,  (VL.10)
(l-hza'ais)uz (‘Z_;(aﬁ{“aii)uz
where we have assumed that 2772 (a2, - a3;) is positive.
In both cases for this type of bound to appear there most
exist a system of phases for the first two lines of S such

that they are unitary orthogonal.
3. Drawing of the results

When m =2, Eq. (VI.6) may be represented by a sur-
face in a 2z + 1 dimensional space. We here write the
equation of the surface explicitly in the variables a,,
and.a;, (i=1,2; j=3,... n+2). Define the following
combination:

n+2

01=§ a,, (VL 11)
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A122
o
o
0.2
R132
7{c) 0.85 0.74 0.30
R122
w
(=)
* A132
7(d) 0.09 0.26 0.40
n+2
0=, a2, (V1. 12)
i=3
n+2
n_Zsj €,0,,0,, (V1. 13)

Equation (VI. 6) implies that the scalar product of the
first two lines of S is equal to zero, and reads

aby((0, ~ 0,)2 + 47%) = 2 &%5(2 — 0, = G,)1% + 78 =0. (VI. 14)

The curve of a2, as a function of #* is given in Fig. 6
when o, is larger than o,.

It may also be worthwhile to have a plot of a2, as a
function of one of the elements of S'? (say a2;). There is
a great number of different configurations and we have
chosen to restrict ourselves to four explicit curves
[Figs. 7(a)—(d)].
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APPENDIX A: GENERAL THEOREMS

We here recall some well-known theorems and give
indications for their proofs.

(1) A unitary matrix U can always be written

U = exp(iH), (A1)

where H is a Hermitian matrix (Ref. 1, Vol.I, Chap IX,
p. 2178).

(2) A unitary symmetric matrix U can always be
written

U =exp(iR), (A2)

where R is real symmetrical (Ref.1, Vol. II, Chap. XI,
p.4).

(3) A Hermitian matrix H can be diagonalized by a
unitary transformation U

H=UHU", (A3)

The same is true for a unitary matrix [by (AD)]. His
diagonal real (Ref. 1, Vol. I, Chap. IX p. 274).

(4) A real symmetrical matrix R can be diagonalized
by a real orthogonal transformation O

R=0RO (A4)

The same is true for a unitary symmetric matrix [by
(A.2), (Ref. 1, Vol. I, Chap. IX, p.285].

(5) Let A be an arbitrary (m Xn) matrix. Then the
semipositive Hermitian matrices AA* and A*A have the
same positive eigenvalues a2 with the same multiplici-
ties. For the eigenvalues zero, the multiplicities differ

by In—-ml|.

(6) There exists a unitary matrix U which diagonalizes
AA* and a unitary matrix V which diagonalizes A*A, and
such that if

A=UAv". (A5)

Aisina pseudo-diagonal form which can Ee chosen real
positive. When n =m, this means that, if A is decom-
posed in

AN(m’ n—m):(}i“, A‘lz)- (AG)

Al g a square m Xm diagonal real positive matrix with
diagonal elements a,, and A2 is identically zero.

Proof: In the proof of (5) and (6) one may use the
lemma:

(M AA*=1, and A’A=1, where 1, is the k-dimen-
sional unit matrix, then m =n. (This follows trivially
from rank considerations.) If AA*=0 then A=0.

The existence of U’ s and V’s which diagonalize,
respectively, AA*in D> and A*A in D® follows from
(3). Using (A.5) as a definition of A, one obtains

M’E:DIZ :ADZ. (A7)
This implies that A may be decomposed in blocks /Tn
corresponding to one given eigenvalue d{¥’ of D, and to
d® of D,, with

Z,szo if d‘,";edsfz’. (A8)
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By writing fﬂf‘zD1 and A*A =D,; one obtains
A_A; =dl,, (1)is the multiplicity of 4V,
d,=dP =d® =2, (A9)

A;rArr = drl(z )

The internal consistency of (A8) (A9) and our lemma
imply (5). By ordering the eigenvalues d, of D' and D*
by decreasing order, the A,, blocks appear on the main
diagonal. Since the A,, are unitary up to a factor they
can be made proportional to the unit matrix by a suitable
unitary transformation inside the subspace correspon-
ding to one eigenvalue. A final phase transformation
makes A real positive. This completes the proof of (6).

(2) is the multiplicity of d'2'.

(8) In complete analogy with (5) and (6), an arbitrary
(m Xn) real matrix A can be pseudo-diagonalized by
real orthogonal transformations O and P

A=0AP. (A10)

APPENDIX B: PROOF OF (111.9)

In this appendix we show that the general solution of
Eqs. (II.1), (1. 2), (I.9b), (II. 12), invariant under Eq.
(I1. 14), (II.4), is of the form (III. 9).

With the notation (III. 1), the Lagrange equations
(1I. 12) become
a-812 12 X2 §12+’

S11 F12% __ 3712 S22+
b —Suirex X125

c- 0 =X15Bx

d - §rexx X125z,

e- 0 =Xw251% (B1)
while the unitarity conditions (II. 1), (II.2) read

a-—G 3t G120 S13 518+ 1,

b =Sl Ge* iz G2 G13GE3e 0,

¢ -G Gien 4 FiaFene 4 GG

d—S12tG1ex | S22 G224 GR3G23¢ 1,

e — 512t 513% | J22 G2ax | 523583+ _ 0,

F-GroGiee 4 Got Gook | GraFese o 1, (B2)

Since the matrices S22+, X'2x'?* and S X* are
Hermitian and commute, due to Eq. (Bla), it can be
shown (cf. Appendix A) that §'2 and X*? can be “pseudo-
diagonalized” in the canonical forms.

s :
12 _ $2 i
S%m,n-m)= . to) (B3)

X%2(m, n-m)= X, (B4)

where we have assumed for definiteness that » is larger
than or equal to m. Moreover the s, can be taken to be
real nonnegative while the x, are real.
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Since S has to satisfy the equations

Juigiex Fize . _ 12 Fies §u’

glle* X12t =X12 X12+ su’

which are consequences of (B2) and (B1), it assumes
the form given by

(B5)

given

s,#0 s=0 s
+x;, =x; t%, =X, x=0
1
J11 1 (B6)
S 9 3 s
3¢ 2
4

where the lines and columns of 5! have been labelled
with the corresponding diagonal values of X*2 and 52
and the shaded blocks or blocks labeled 1,2,...) are the
only nonzero ones. More precisely §}} may be different
from zero only if either

(1) §;=5,#0 and x,=-x,#0 (blocks 1, 1%),

(2) s;=5,=0

(8) s; and s, arbitrary and x;=x,=0

and x,==xx,#0 (blocks 2, 3),
(block 4).

An analogous reasoning applied to 3% leads to

g1ven #0 s=0 anys
+x; -xj +x, =%, x=0 n-m
1
'S'zz= 1t (B7)
2 3
3 2

4

Compared with the 5!, the structure of 52 is quite the
same except that the block 4 in S?% has been expanded to

1534

include the n — m extra lines and columns. Equation
(B. 1b) then implies the following relations between S**
and 522

S (block 1)= - S22 (block 1),
51 (plock 2)=+ 522 (block 2),
S (block 3)=— 522 (block 3). (B. 8)

Equations (Blc) and (B1d) then reduce $® and §2° to the
form

‘(V// om0 [///

Unitarity (B2) then implies that the blocks 1 in (B6)
and (B7) are square matrices except when s;,=1. When
s is different from zero and one, this signifies that the
nonzero x’s appear in pairs of opposite sign (x, = - x,).

The fact that there are basically no other conditions
on the possible values of x’s and s’s can be verified
readily by checking that the matrix of Table I is unitary
and symmetric, and satisfies the Lagrange equations.

In this table specific values of $*=0, §22=0, S, §22,
and 5%3=1 have been chosen quite arbitrarily. We have
the right to do so because we have only to show that
there exists a solution for those submatrices which does
not give further restrictions on the matrices X' and
St2,

APPENDIX C: PROOF OF (111.17)

When X*? has one non-zero element (X% =) and U*
and U?% have respectively (m — k) and (n — I) zeros on
their first columns, X2 is of the form

TABLE 1.
m
n 7y ny nj ng ny ny 7y n ng n—m . p
any x 1
x 1-s s
m - 1-¢ ) s
x=0 vi=s? s
5= any x 1 0
1
s -V1-=¢s?
n s —VT=73st
s -Vi-s2
0 1
1
» 1

aAll elements of § are zero except where indicated.

J. Math. Phys., Vol. 15, No. 9, September 1974
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1xl2 0
X2 (kl “ 'lk) = : (e
n= 0 0

where 1X!2 jg a X1 nonzero real matrix. Analogously
52 will be written in rectangular blocks

11Q12 12012
gia (k, m - k) (% ©2)
lin=1 21612 22g12
where 1152 ig a real matrix.
Let UM and U?2 be the unitary transformations
115711 12yr11
U U
U“(I;’ m - ’i) = (C3)
,ym- 0 22U11
and
llleZ 120*22
U22<””‘ l) - (C4)
1’ n-1 0 22U22
which pseudo-diagonalize S'2 in §2
S12 gt §12 ezt (C5)

The matrix $*2 has s,=1. Also remark that **U" and
11py?2 gre, respectively, £X1 and /X1 matrices.

We now show that 1§12 11512t — 1112 11g12+ ha g Hyyll g9
an eigenvector with eigenvalue 1. Indeed

11 2¢
11312 — (llUll’ 12U11) §12 (125222 t) , (C 6)
and
11Q12 118124» 11U11 — 11U11 12U11 §12 11 0
S = ( , ) 0 izpeet 1zpymx

(1
12
xS (o)’

1
— (117711 12p711

— g (C 7)
Let U™ and 022 be the kX and X1 orthogonal ma-
trices which pseudo-diagonalize 1S'2, Then
7t o\ /1, o© o\ /02 o
sz _ 0 2z§1z 2s§1z
0 1,/ \o s2g1z 33512/ \ ¢ 1,
au 0 zrzzz 0
= Stz ]. (C8)
o 1,., 0 1.,
Let U™ and %2 be the (m — 1)X(m~1) and (n-1)
X{(n - 1) matrices which pseudo-diagonalize the sub-
matrix
k=1,m—F 22512 23§12
(z —1,n-1 ) = (”g ssg1z (C9)
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of S'2, Thus

Sz G)l 5‘,)“) Sz (101 ﬁ‘; ,) . (C10)
Combining (C. 10) with (C. 8), one sees that
gm0 > (1 0)
11 _ 1 I
UM = ( o 1.)\0 (C11)
= 0 (1 0
2 PR,
= 2) (6 ) c12

which are of the desired form (C3), (C4). It is again
clear that the first column of ¥** (resp. U/*?) is precise-
ly 11U11 (resp. 11U22).

The crucial property of this solution can be seen in
Eq. (C8). When ''$* is diagonalized, the number S*? is
one. This implies immediately that 1382 and 'S haye
to vanish because of unitarity. This last property is
equivalent to

12Q12¢ 117711
SEHUT=0, (C13)

21512 11722 _
since (D) =01+,

For this type of solution to exist, it is necessary,
once a set of €;,’s (=+1) corresponding to the real part
of 11512 has been chosen, and once one eigenvalue of
ligi2 11g12¢ ha g been set to one, to see whether there
exists a set of phases for 12512, 21§12 and 22$!2 gych that
(C13) is satisfied and such that the resulting S$'2 has all
its corresponding 53 between zero and one.

It should be remarked that for condition (C. 13) to
hold, a sum of 2 or ! complex numbers whose moduli
R, are known has to vanish. This is in general possible
only when k or [ is larger than or equal to three. The
condition reads for all i

R, <R,
i+ :

It is not difficult to see that this type of solutions
forms (nm — 1) dimensional pieces of boundary £ by
taking all moduli very small except along the pseudo-
diagonal of $2,

(C14)

APPENDIX D: PROOF OF det «, (|56 |? -ac) = det (1 - BB*)
Let

A =(1s, 25), (D1)
Bt=(11gt 21gt) (D2)
a,=1-44", (D3)
B =1-115ge (D4)

where S and *’S* are one-column matrices, and @, and
B are invertible. Let also

a=1+128" q;1125, (D5)

b =128 o1 15 215", (DS)

cC= - 1 +215215++21s lls+ a;l 118218+. (D7)
We want to prove that

(1612 ~ac) det a, =det(1 - BB*). (D8)
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For this we will use the two tricks

M, M,\{1 -M?M M, 0
p— ’
M, M, J\0 1 T \M, M,-M,MM,
(D9)
MG - M =M (M, - M,) M. (D10)
First it easy to prove that
detB=adeta, (D11)
by taking the determinant of the equation
12 12
1 S B 0O\_ [ S (D12)
0 1 - 1zs+ 1 lzsa 1
a, 0
— 1 a;l 1zs
- ms* 1+ 1ZS¢ a;l 1zs 0 1
Using (D9) again for M =1 - BB*, taking its deter-
minant
det(1 - BB*)=ddet B, (D13)
d=1 __2ls 2ls+_215 11566-1 115 2ls+ (D14)

and replacing det B by (D11), it remains to prove that
1512 —ac =ad, (D15)
which follows simply by repeated application of (D10).

APPENDIX E

In this appendix, we present with some details the
calculations leading to the bounds of s,, when m =2 and
p=0, namely when

Sll Slz
5(2,n)= stzt 522/ (E1)
The moduli of S'? are supposed to be given. Then
Xll X12
X(2,n)= (E2)
Xlzt 0 .
and
0 X0
Xt (E3)
X1a 0

1. Solution of the first-class condition

Following (II. 14), let us perform a transformation
with the particular matrix

it 0
U(2,n)= (E4)

0 U*

This transformation leaves the submatrices (E1), (E2)
globally invariant, but does not respect the structure of
X' [(E3)]. Restoring this structure will be a supple-
mentary second-class condition.
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As is shown in Appendix A, 5§ can be pseudo-

diagonalized
§12(2, n-2) =(11§12, 12§12)’ (E5)
with
5 s, O 0<s,<1, 0ss,s1 (E6)
11g12 ,
0 s,
ngiz _q, (ET)
We shall assume here, without loss of generality, that
1#det52 4 0, (E8)
At the same time, one may choose €, and
B c, 0
Si= ) (E9a)
0 C,
c,=¢€(1-s%)/2 (E9b)
11§'22 12§22
Sz , (E10a)
12’§2zt 22322
ugz _ 51, (E10b)
125% =0, (E10c)
252 =1, ,. (E10d)
The Lagrange equations
§X=X'3 (E11)
then imply
(11) Siie}n | 12G12kyi2e _ gile G11 | 11ek 11§12t,
(12) Susuxz — X1+ 11G12 4 L1pak 11522’
(13) Stszxiz —1zx12%22g22 (E12)

(22) 11§12-115'(12
(23) 11§12+125'{12r

— 115'(1z¢ 11g12
- b

=0,

where for X'? a decomposition (2,m - 2) has also been
made. Equation (E12 (23)) together with (E6), (E8)

imply
12512 _

(E13)

while (E12(22)) suggests the convenient parametrization

uge _ zugiz
Z=2".

(E14)
(E15)

Finally (E12(12)) leads, for X!, to the value

)‘211=Z§11 +5u zt

(E16)

since (E12(11)) and (E12(13)) are then identities.

2, Solutions of the second-class conditions

There are four types of

second~-class conditions:

(a) X' must be of the form (E3),

(b) the phase of x;, must equal the phase of s,,,

(c) the phase of the corresponding elements of $*? and

X2 are equal,
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(d) the moduli of the elements of 512 are fixed.

Let U™ be an arbitrary (2X2) unitary unimodular
matrix

v
U= (_l:,* u*), [ul2+ |0 [2=1; (E17)
the expression of S* is
Sy §11 Uut
utc, +v2¢, —uv*c, +u*ve,
- (E18)
—uv*c, +u*ve, v e, +u’c,
so that
X, ==uv*c, tu*ve,. (E19)
In turn
)?11 = [+ 1 u*
(E20)
—2u%y [u|?=|v|?
=X)a
|u|2- [v]? 2 uv*
But, following (E16), the diagonal elements of X'
should be real; thus
u*v =€ yv* (E21)

is purely real (¢’ =+ 1) or purely imaginary (¢’ =~-1),
and Z becomes (s, #5,)
—u*v/c, (Ju]?= |v[®)/(c+€cy)
Z=x 2
(Ju|2= |v]|®) /e, +€¢,) +uv*/c,
(E22)
The value of X' is then obtained from (E. 14). By
modifying suitably the ¢; of (E. 9b) one may always
choose

€=+1 (E23)

as it is not difficult to verify. The transformation U'!
is then equivalent [by (II. 15)] to a purely real (thus
orthogonal) one.

Accordingly there are three distinct possibilities:

(a) U?2 is real. All phase conditions are trivially
satisfied. The moduli of the elements of S$*? can be
given their pre-assigned value by using the freedom on
UM, s;, and U?® as shown in Appendix A. At this point,
it is clear that this type of solution exists for arbitrary
values of m, since when all matrices are real the phase
condition is trivially satisfied. One method to obtain the
explicit value of that bound is explained in the main text.

(b) U? is complex. As can be seen directly from

Sz i §12 U22t, (E24)
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X2 yu 12y, (E25)

The condition for $*2 and X' to have the same phase is
that each line of U 82 is proportional to the corres-
ponding line of U*! X*2, This leads to the relation

(w2c, +1v2¢c,) (PP e, +uPc,)=0. (E26)
Let us analyze one of these two analogous case, say
utc,+ 1% ¢, =0 (E27)

which implies in particular that ¢, ¢,=-1. Then, as is
seen from (E18), s,, is equal to zero while X*® has its
second line identical to zero. The maximal value of a,,
is then simply

a13=(1-"‘é @) (E28)

and does not depend at all on the second line. The ele-
ment (22) of S*! then becomes

azz=(§ a;- g agi)l/z'

This result is analogous to the amputated case of
Proposition 5. For this maximum to be realized, it is
evidently necessary that

2 n2
2 a3y = 22 a3,
{a3 {=3

[Otherwise the other solution of (E. 26) has to be con-
sidered. ] Moreover, there should exist a system of
phases for S* and $*2 such that the two lines of the
2X(2 + n) matrix

(81,52 (E31)

are unitary orthogonal. This means that a sum of (n+ 1)
complex numbers of known moduli R, =a,, a,; has to
vanish. The condition is equivalent to (C14) and reads

R, S,Z#} R, (E32)

(E29)

(E30)

(c) x,,=0. This is the trivial case which corresponds
to X identically zero, and consequently

(E33)
which is possible if, by a suitable choice of phases ¢,,,
(E34)

SN=0

sy, =exp(ig,)a,, (i=1,2.j=3,...,n+2),

the two lines of S!2 can be made unitary orthogonal.
This leads again to conditions of the form (E32).
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We consider the spontaneous breakdown of a symmetry group % which is the direct product of two
groups: ¥ = . X 3. We study the conditions under which the breakdown of % entails that of both
.AandB. Our results are corroborated by an explicit example, where € is S U, X L, L being the
Lorentz group, and such that any spontaneous breakdown of € entails that of both S U, and L.

1. INTRODUCTION

Spontaneously broken symmetries can be dealt with
in different ways, 17 according to the general theory one
is working in. Different approaches provide in general
different characterizations for the breaking to occur,
yet the group theoretical properties of the breakdown,
as algebraic and therefore more abstract attributes are
involved, should be independent of the approach, that
is intrinsic to the system under consideration.”

In the present paper we shall consider a problem of
algebraic type, namely concerning the breaking of a
symmetry group ¢ which is the direct product of two
Lie groups, «& and & . We shall investigate this problem
in the Wightman formulation, and, under some condi-
tions on the representations of 4 and #& involved, we
shall show that the breaking of ¥ entails that of both .«
and @. Put in a more precise fashion, we shall show
that if the physical quantities transform according to an
irreducible nontrivial representation of 8, then, if &
breaks down, # does the same.

Therefore, if .4 is broken, in order to avoid the
breakdown of &, the system should transform according
to a representation of # containing the one-dimensional
representation,

This situation will be illustrated by an example,
where the symmetry group # is the direct product of
the internal symmetry group SU, and of the Lorentz
group, the physical quantities considered being self-
interacting vector mesons. It will be shown that any
spontaneous breakdown of ¥ forces both the internal
symmetry and the relativistic one to break down, and
that this agrees with the general resuits mentioned
above: in fact, in our example, both SU, and the Lorentz
group act via irreducible nontrivial representations.

The following sections are organized as follows: in
Sec. II we shall derive some general results within the
Wightman formalism; in Sec. III we shall work out our
example, which is described in terms of a Lagrangian;
Sec IV will be devoted to some comments, regarding
particularly the relationship between our results and
other works on the breakdown of compound symmetries.

1. GENERAL RESULTS

We want to give some general results concerning the
occurrence of the spontaneous breakdown of a symme-
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try, the latter being described by the direct product of
two groups.

These results are quite general and can be convenient-
ly stated in the Wightman formalism.

Let ¢ be a field (or a Wick polynomial in several
fields) acting in the Hilbert space 3C. Suppose ¢ to trans-
form under the group ¥ =4 X® (.4 and ® being two
groups) as follows:

% %(x) = (1(A, B)¢)**(x), (1)
(7(A, B)g)*“(x) =e:' a'(A)D(%' *(B)¢p** (x),
VAcd, Bes®,

where 4 A —~D (A), 8 5B —Dg(B) are finite-dimen-
sional representations of &, 8, respectively.

We say that .4 is an exact symmetry if there exists
a representation A — U, of 4 into the unitary operators
on JC such that U, leaves the vacuum invariant, for any
A, and

(T(A,1 ) ) (%) = U,y ¢ ()UL, VA e A, (2)

Igbeing the identity operator of .

A quite similar definition holds of course for #8. Thus,
if # is an exact symmetry, any Wightman function has
the following property (covariance):

(@, 64z -+ $n(,)) (3)

=DpA(A)® - - B DI “H(ANRQ, 9"i(x,) - - - () Q);
in particular, for n=1

(@, **(x)R) =Dg “(A)(Q, $“*(x) Q). (4)

But if we assume that D, does not contain the identity
representation, the latter equality entails

(@, o (%)) =0 va,vd

On the other hand, if « is not exact, we have a broken
symmetry. This means that at least one Wightman func-
tion does not enjoy the covariance property (3). If we
assume-—as usual—that a symmetry proves broken
through the noncovariance of the one-point Wightman
function, and furtherly that D, does not contain the
identity representation, then the breakdown is charac-
terized by the following statement:

(S) If 4 is broken, then there is at least one index @
such that

1538
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(@, o>% %) #0, Vb,

After this preparation, it is easy to prove the following
‘result:

Theovem 1: Assume that D, and L, do not contain
the identity representation; then if .« is broken, & is
broken as well.

Proof: If 4 is broken, by (S),
@, d(x)2)#0 Vb

3 a such that

but if 8 were an exact symmetry, the latter quantity
(&, $*°(x)?) would vanish for any a, b. Thus # must be
broken as well,

A similar situation prevails if 4 proves broken
through the noncovariance of another. Wightman function
say, "the nth. First of all, if « is exact, and we assume
that ®D‘)¢.does not contain the identity representation,
we have

(2, 9°1%x,) - - 9*1n(x,)2) =0 Way,..

Thus if 4 is broken, there exists a n-tuple a,,...,d,
such that

(2, pM10(x,)  + - d¥Pn(x ) Q)£ 0 Vb,,...,b,.

Within this framework, the following theorem holds
true:

vy @y by ey by

Theovem 1,,: Assume that & Dy, @ D, do not contain
the identity representation. Then if .4 does not leave
the n-point function invariant, 8 is broken as well.

The proof mimics that of the preceding Theorem 1,

In the following, we shall speak of a broken symmetry
only in the sense of statement (S). It can be noted that
this is the usual assumption in several field-theoretical
models (¢ models, tadpole techniques, variational
approaches, etc.). Even with this assumption there are
some relevant generalizations of Theorem 1, namely:

s

resentation of it acting on the fields ¢. In order that a
subgroup §'C( is conserved (i.e., is contained in the
“exact” residual symmetry), a necessary condition is
that I)g contains, when reduced under (', the identity
representation Ig: of 7.

Theovem 2: Let (; be any Lie group and Dg any rep-

The proof of this statement is similar to that of Theorem
1,

Another generalization of Theorem 1 deals with groups
of transformations acting not only on the indices a, b,
of ¢%*x) (corresponding to the internal degrees of
freedom), but on the coordinates x as well. Let us for
instance suppose that & is the homogeneous Lorentz
group. Then (7(A, B)¢)*?(x) reads:

{7(A, B)¢)“"’(x1=13;' “’(A)D%-"'(B} &% (Agx)
and, if 8 is an exact symmetry, we have in particular:
(2, 9> %(x)Q) =Dgg*(B) (R, ¢ (A7) Q).

But if we assume translation invariance of the theory,
(2, ¢(¥) Q) does not depend on the argument of ¢, so the
last equality reads

(2, $%° Q) = D *(B)(®, $°¥ Q)
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and, if, as above, D B does not contain the identity
representation,

(&2,0%2Q)=0 Va,b.
Thus:

Theorem 3: Theorem 1 still holds when ®8 is the
Lorentz group.?®

The relevance of this theorem is evident in the ele-
mentary particle physics, when describing for instance
an isospin multiplet of vector particles {e.g., the p
mesons), that is, particles transforming in a definite
way both under an internal symmetry group 4, and
under the Lorentz group. Then, under the hypothesis of
theorem 1, if .« is broken, the Lorentz group is broken
as well.

Our basic results (Theorems 1 and 3) might appear
surprising at first sight, since one knows that for
nonspontaneous symmetry breaking the internal symme-
try is broken but Lorentz invariance is not; to clarify
this point, we want to emphasize that what is assumed
here is that the direct-product structure of the two
groups is preserved. In other words, we have the
situation:

Internal Lorentz- Direct-Product
Symmetry Invariance Structure
Nonspontanecus
breaking: Broken Preserved Broken
Spontaneous
breaking: Broken Broken Preserved.

‘111, A CONCRETE MODEL

In the present section we shall consider a concrete
model which behaves according to Theorem 3: more
specifically, the breakdown of the Lorentz invariance
will arise in any spontaneous breakdown of the whole
symmetry group. This will be shown, for simplicity
sake, in the framework of the “semiclassical”
Lagrangian formalism. It is known, actually, that the
equations obtained by means of this formalism, if suit-
ably interpreted, remain essentially valid in the quan-
tum -field -theoretical approach. ®° To our purpose,
therefore, we may use equally well the Lagrangian
formalism, which provides in fact the most simple and
convenient scheme for the analysis of the abstract situa-
tion, because it retains all the group-theoretical struc-
ture underlying the problem. More specifically, we
want to obtain:

(i) The directions in the representation space along
which the symmetry may break down, together with the
residual symmetry group.® 7' These directions corre-
spond to the stationary points of any quantity @ =Q(®)
which is left invariant by the symmetry group (the static
part £, of the Lagrangian in our case), namely the
points & where

0Lee _
% O

These directions are only determined by the group-
theoretical structure of the representation space, and
in particular are independent of the very source of the
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breaking (e.g., tadpole terms, bootstraps, external
driving forces. *'12)

(ii) The “mass spectrum?” of the system under consid-
eration. In the Lagrangian formalism, after the intro-
duction of the “shifted” fields

(p:d)—a

with vanishing vacuum expectation values (as in the o
model or in the tadpole formalism!*'!%), the mass
matrix is given by the second-order coefficient in the
expansion of £ in terms of the “true” fields ¢

G
69,00,/%

around the stationary point &. Of course , this definition
is meaningful only for ¢-number valued ®’s; it is known,
however, that the latter quantity is the analog of the
quantum-field-theoretical mass tensor, which is given
in fact by the second (functional) derivative of the
Legendre transform of the functional generating the T-
ordered connected Green functions. ?'®

After these preliminaries, let us define the model,
which describes a system of selfinteracting vector
mesons. !®

The symmetry group is § =L XSU(2), L being the
Lorentz group and SU(2) the isospin group. We denote
the fields by V%1 =0,1,2,3; 1=1,2,3), with the
‘metric’ g:

)
A0 -1
We define the Lagrangian
£==3F}, F* +5m*ViV + gt (a* v V{ V)

+3g (VI Vi vy L yviyityd yis) (5)
where

Fl, =3V, -2,V 8,= ga;x ; m,geR.
The spontaneously broken solutions are the nonzero
solutions of

6ﬂ(:st —_
sV~

0, (6)

where £, denotes the part of £ which does not contain
any derivative of the V’s. After some manipulations,
(see the Appendix), one sees that the solutions are two:

(a) v®=0, 1=1, 2, 3.
VHE= 5t u(gva)t, 1,i=1, 2, 3
where p?=-m?>0,

(B) vP=vB=0, I=1, 2, 3
Vi=sling?, 1,i=1, 2,
with p?=-m?>0.

These solutions exhaust all the solutions of (6) in the
sense that all the solutions (apart from the trivial one
V**=0) can be reduced to either of them by means of a
transformation of the symmetry group g , and therefore
fall into two inequivalent orbits of equivalent (i.e., ¢ -
conjugate) points.
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Note that in order to get real symmetry breaking
solutions and at the same time a Hermitian Lagrangian
we are forced to take m? <0; hence our Lagrangian (5)
cannot be viewed as the sum of a free and an interacting
term, ¢

In the following, we shall consider the residual in-
variance and the mass spectrum associated with the
broken solutions given above. As to the solution (A),
the residual symmetry group is an SU(2) group with
generators

Xizeijk‘Mjk*'Ti’ (i,j,k=1,2,3),

where M and T are the generators of the Lorentz and
of the isospin group, respectively: This group acts on
both the isospin and space variables, rotating them
simultaneously, so to speak, through the same angle.
This exhibits the occurrence of the combined breakdown
of the Lorentz and of the internal symmetry: the break-
ing of the Lorentz invariance cannot be avoided if the
internal symmetry breaks spontaneously, which agrees
with the general argument of Sec. II. In addition, the
model predicts some “mixing” between the spatial and
the internal variables. As to the mass spectrum, this
is given by the eigenvalues of the matrix

Ml,x;n,uz[ Gzﬂest

OV; GV:] Vv stationary?

which, after some computations, are
(a) 2u® (simple),

(b) — u® (degeneracy 5),

(c) zero (degeneracy 6).

Here, the eigenvectors associated with (c) play the role
of Goldstone particles,” as expected.

As to the solution B, the breaking of the symmetry
is here even more drastic, as the residual symmetry
group is abelian, namely the direct product of O(1,1)
with SO(2), with generators M®® and T° +M*2, respec-
tively. The same considerations as before apply, and,
regarding the mass matrix, the eigenvalues are

(a) 2u2  (simple),

(b) =2u? (degeneracy 2),
(c) p? (degeneracy 2),
(d) zero (degeneracy 7).

IV. FINAL REMARKS

As we have already mentioned, our results show two
relevant features, namely, the large breaking of the
Lorentz invariance induced by the spontaneous break-
down of the internal symmetry, and the mixing of spatial
and internal transformations in the residual invariance
group.

There are some other points which deserve mention.
We have found, for instance, that the masses of our
multiplet turn out to be independent of the “coupling
constant” g. This amounts to say that the size of the
mass splitting does not depend on the size of the inter-
action term (if only not zero) in the Lagrangian (5).
Therefore, the constant g plays a very peculiar role:
it is a ‘sort of “catalyst” for the occurrence of the
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spontaneous breakdown. The existence of such quantities
seems to be a quite general feature of the spontaneously
broken symmetries.

Another interesting point is that both solutions of Eq.
(6) are actually unstable, due to the occurrence of
negative eigenvalues of the squared mass operator. A
similar situation has been already observed in Ref. 7,
this result being possibly related to the dynamical
approximations involved with the Lagrangian formalism.

To conclude, a few words on the breakdown of the
Lorentz invariance. The occurrence of such breakdown
is of course a rather disturbing feature, yet, the
spontaneous breakdown of the internal symmetry when
vector or spinor particles are involved is generally
assumed in the literature (see, for instance, the case of
the w - ¢ mixing, !/18*2 or the chiral symmetries. *'*°)
For spinor particles, this situation has been investi-
gated by Swieca.?° In the general case, our results
(Sec. II) indicate that a possible way to avoid break-
downs of the Lorentz group is to start with a reducible
representation of this group, containing in particular
some one-dimensional representations. In terms of the
Lagrangian formalism, this amounts to say that one
should consider Lagrangian functions depending not only
on nonscalar fields (e.g., vector fields V?, as in our
model), but also on some scalar fields S, both V and S
transforming under some representation of the internal
symmetry group. In this way, spontaneous breakdown
of the internal symmetry group is introduced by assum-
ing that some of the fields S have non vanishing vacuum
expectation values

(2,5Q)%0

and that all the vector (and in general nonscalar) fields
have VEV’s equal to zero:

(@,ve)=o0,

The latter condition prevents the breakdown of the
Lorentz invariance, whereas the former ensures the
breakdown of the internal symmetry. The effects of
this appear not only in the multiplet of the S fields, but
also in the other subspaces, thus giving rise to the mass
splittings, ete., of all multiplets as imposed by the
smaller residual (internal) symmetry, Roughly speaking,
we may say that the breakdown is spontaneous in the
subspace of the S fields, and is induced in the others;
in fact, we can note that in this way the Goldstone parti-
cles belong exactly to the subspace of the S fields. An
approach of this type has been already used in the litera-
ture, with remarkable physical results, *°
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APPENDIX

We give a brief outline of the proofs needed in order
to establish the results announced in Sec. III, To start
with, some general results:
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Proposition Al: Let (E, g) an m-dimensional real
Euclidean space E provided with a pseudometric g (real
symmetric bilinear form on E, not necessarily positive
definite). Let the product of two matrices T, S over E
be defined by

(T, S):: =T Sﬁ =T*" phsb-

Then if a matrix T satisfies the equation P(T)=0 (P
being an arbitrary polynomial) with simple roots, T has
a basis of eigenvectors.

Pyoof: Standard, apart from the occurrence of g: the
decomposition of any vector v € E into eigenvectors of
T:v=2Xv, is done by putting

V)= [Q(a)(T)/Q(a)()\(a))]v;

where A, are the roots of P(z)=0, and @, is such
that P(T)=(T - A(a)g) Q(a)(T) =0.

Proposition A2: If (E, g) is as above, and T is a real
symmetric matrix with real eigenvalues, then the eigen-
vectors of T can be chosen to be real, and eigenvectors
belonging to different eigenvalues are orthogonal with
respect to g. The proof is trivial, as it mimics the
standard one.

An easy consequence of the above propositions®! is:

Pyoposition A3: Let (E, g) be as above. Then a matrix
T which satisfies both the hypothesis of Propositions
Al and A2 can be diagonalized by means of a g-preserv-
ing matrix.

Let us now turn back to Eq. (6)

5L
oV

4

which, when written explicitly, reads
m2Vit + g VI VLY Ly YisYiy =0,
Multiplying by V! and summing over ! we get
m*T) +g¥T,, T** - T} T:) =0,
where
T?w — Vl)tvlv
Using the above Propositions we may diagonalize T (its
eigenvalues, f,, f,, ¢,, {; are real and positive in view

of the reality of the V’s) and obtain the following
equations:

to(m?+g2(t, +t, +¢,)) =0,
t(-mP+g¥(t, +t, =t =4, =1))=0, i=1, 2, 3.

Apart from the trivial (zero) solution, there are only
two solutions of the above equation, namely

(a) t,=0, t,=t,=t;=-(m?/2g%),
(b) ¢,=0, only one of the ¢,’s equal to zero, the re-
maining two equal to - (m?/g?).

These solutions correspond precisely to the solutions
(A), (B), given in Sec. III.

As to the mass spectrum, we give the explicit form
for the mass matrix and for the corresponding eigen-
vectors (the entries of the matrix are labeled in the
order V'°, v20, y* vyl vy )
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Case (A) ~m™M

o 0 0

000 0-20

0 010 100

N 001 000
—2

010 100

0 -200 000

000 001

001 000

0 000 001

200 0-20

The eigenvectors are

(a) V* + V2 +V* ywith eigenvalue —2m?.
(b) V12 + ‘ﬂl; V13 + V‘Sl; V23 + V32; V].]. - ‘/32; Vll - VSB,

with eigenvalue +m?2.

CO- OO oo

©oro moo ooo

o ool

ooco ol

[V

N

(C) VI.O; Vzﬂ; VSO; V12 —- V21; ‘/28 - VSZ’ ‘,31 - Vla

with eigenvalue 0.

Case (B) —m™2M

000

000 0 0
001

000 0-2

0 010 10

B 000 00

010 10

0 =200 00

000 00

0 0 0
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(=Nl ol NN

oo
oo o

(=2 =)

The eigenvectors are

(a) V' +V* with eigenvalue - 2m?.

(b) V2 + V2, V' _ V2 yith eigenvalue +2m?2,
(c) V®, V* with eigenvalue —m?.

(d) VIO; VZO; VIS; V23; V31; wz; V12 - V21 With
eigenvalue 0.
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This paper studies the symmetries of a function which generalizes the 3j coefficients of SU(2) and of
SU(1,1) involving discrete unitary representations. As a by-product of the analysis, the symmetries

of the SU(1,1) coefficient are obtained.

INTRODUCTION

Recent works!™! have pointed out a deep connection
between SU(1, 1) and SU(2) unitary representations, and
between corresponding Clebsch—Gordan coefficients,
This connection can be best visualized through analytic
continuation in the representation parameters in such a
way that discrete and continuous representations appear
essentially on the same footing. **® In this respect one
might say that the SU(1,1) case can be regarded as a
suitable extension of SU(2).

On the other hand, in the copious literature about
quantum angular momenta there exists an extension®’

of SU(2) representations, coupling and recoupling coef-
ficients whose connection with the aforementioned unify-
ing treatment of SU(2) and SU(1, 1) has not yet been
clarified. We mean the generalization to valuesj of the
representation parameters of SU(2) related to the usual
onesbyj=—-j-1,

In our work we shall show that there exists a highly
symmetrical structure which contains all these exten-
sions in so far as discrete representations are con-
sidered. In so doing, the relations between SU(2) and
SU(1,1) coupling and recoupling coefficients will appear
as particular instances of the symmetries of the struc-
ture. Moreover, we shall obtain as a byproduct of our
analysis a complete characterization of the symmetries
of SU(1,1) coefficients with discrete representations.

In the particular case of 6j-coefficients, our work
will contribute to the solution of a problem which arose
recently, In fact new symmetries of the 6j of SU(2) were
claimed to holdg; however, they are not actual sym-
metries, as they violate triangular conditions.® In a
forthcoming article we shall show that they are elements
of the invariance group of the general structure.

The present paper is entirely devoted to the 3j-coeffi-
cient. In Secs. 1 and 2 we introduce a set of real varia-
bles which are particularly suited to express the 3 of
SU(2) in terms of entire functions proportional to hy-
pergeometric series 3F,(u,v,w;y,2;1). The restriction
of these variables$ to a discrete set of values imposed by
SU(2) triangular conditions, suggests how to extend the
SU(2) 3j-coefficient to a larger discrete domain Rc R,
This is achieved in Sec. 3 where we consider a set of
functions defined over R which satisfy a system of rela-
tions whose role is essentially equivalent to the recur-
rence relations of the aforementioned ;F, series. These
functions provide the extension of the 3j of SU(2) to the
whole R and coincide—apart from a well-defined phase
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factor—with the SU(1, 1) Clebsch—Gordan coefficient in
a suitable subregion of R; moreover, in the remaining
portion of R, they coincide with the extension of SU(2)
and SU(1,1) 3j-coefficients to values —j — 1 of at least
one angular momentum parameter j labelling SU(2),
respectively SU(1, 1) discrete unitary representations.
We stress that, especially when it is not explicitly
stated, we consider only this class of SU(1,1)
representations.

In Sec. 4 we study the symmetries of the generalized
functions and find 72 - 20 (=1440) points in R where they
differ by a phase factor which is explicitly determined.
Through these symmetries the values of our generalized
functions are known in the whole R once we know the
SU(2) 3j-coefficient in the subregion of R characterized
by SU(2) constraints. Furthermore, by restricting the
analysis to SU(1, 1) subregions of R, we find 6.18 (=108)
symmetries of SU(1,1) 3j-coefficients with generic dis-
crete unitary representations; they are studied in detail
in Appendix C. All symmetries of the generalized func-
tions can be thought as consisting of the 72 + 108 SU(2)
and SU(1, 1) symmetries enlarged by the transforma-
tions which change at least one j into ~j — 1; in fact,

(72 +108) - 8 = 1440,

Finally we show in Sec, 5 how the Regge square-
symbol for the 3j of SU(2) can be generalized to our ex-
tended structure; we are led to a geometric configura-
tion of lines, points, and planes in R®,

1. BASIC DEFINITIONS

According to Whipple notations, !° we shall use!! the
variables 7, € R, ac w=1{0,1, 2,3, 4, 5} or, in short,
r=(7y,71,7s,73,74,75), restricted to a space R by

a;«: 7,=0.

It is also convenient to introduce the auxiliary variables

(1.1)

Bu(r) =7, = 7y+1, VWia,blcw, 1.2)

QX)) =7, + 7, +7,+%, Wa,b,clcw; (1.3)
lower case italic letters a, b,c,d,e, etc. will denote ele-
ments of w, while the lower case Greek letters o, 7, ¥
will denote subsets of w with [ol =17l =1yl =3 and
0'=w-o0, etc. Therefore, we shall write also a(r)
:Ea€,7¢+§ and, if no confusion arises, we shall ab-
breviate a,(r)=q,.

Equation (1. 1) entails many linear relations among
the auxiliary variables as there are (§) =20 different o’s
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and (§) =15 different 8’s; we quote only the basic
identities

a,+ay=1, Vo, 1.4)

(1.5)
where a,b,c,d, e, f is any permutation of 0,1, 2, 3,4, 5.

Qe+ Olgge + Upep + Opgp =2,

In R'® we consider the function

F(= Bay, = Bros = Bsor — B1o, — Bso)

_ 3Fa(034, @124, 245380, Bao;1)
T'(ay35)T(B20) T'(Byo)

where, of course, B,)=8,(r), a=1,2,3,4,5,
= ay34(r), etc. F has the following fundamental
properties:

(1.6)

1.7 Theorem: F(= Byy, = Byo, = B3, — B1os = Bso) is sym-
metrical with respect to any permutation of its variables
By(r), ac w~0, namely, of 7y,7,,73,7;,75; hence we
may write F(- By, Vac w—0).

The proof is due to A.C. Dixon, }
1.8 Theorem: F is an entire function of each variable.
Proof: See Appendix A.

By exchanging in Eq. (1.6) 7, with any 7,,ac w -0,
one can define F(- 8,,(r),Vac w - b), ¥be< w; owing to
Theorem 1.7 it is customary'? to adopt the notation

Fy(b;r) = F(- B,(r),Vac w - b) (1. 10)

Fo(b;r) = F(= B(- 1), Vac w - b) ’ :
and to write, if no confusion arises, F,(b), F,(b). These
12 functions are linearly dependent; they satisfy'® the
following relations:

Vbew

sin(nfw) Fyla) | Fy(b) Fofc)
"r(o‘nbc) r(acde, acef’ aadf) r(abde’ abef’ abd.f) ’
sin(mB)F,@ B R
Wr(adef) F(aabd, aabe; aabf) r(aacd, aace’ aacf)
(1.12)

where a,b,c,d,e,f are any permutations of 0,1, 2,3,4,5
and I(x,x,, -+ )=I1,T'(x;). If one or more ¢’s assume
integer values, part of Egs. (1.11), (1.12) simplify re-
markably; in particular, if o, (r) is a positive integer,
these equations imply*3:
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ceno' r(a[o-a)Uc(r) Fp(a;r)
= (_ l)aa' = cga r(a{a-c)ub(r)) Fn(b;r)’

Vaco, Ybheo',

so that the value of both sides of Eq. (1.13) depend on
neither ac o, nor b co’. These two-term relations will
play a basic role in what follows.

(1.13)

2. CONNECTION WITH THE 3/ COEFFICIENT OF SU(2)

As the 3j-coefficient of SU(2) depends upon five inde-
pendent parameters, j,, p,, £=1,2,3, 33 1,=0, the 7
variables are certainly suitable to express this coeffi-
cient as shown in Ref. 3 in a similar context. It will be-
come apparent in Sec. 4 that they are the right variables
to study the symmetries of our generalized functions.
We make the following identification:

(ii Ja fs)

My Ha W3

=( (ri—7r,-1)/2 (rs—7ry-1)/2 (rs=7r,~1)/2
(72+7’3—7’4—75)/2 (T4+1"5—7’0—1’1)/2 (7’0+7’1—7'2—73)/2

Jo+ds—J1 Fs+i1—J2 J1+ja—1Js

=| Ji— Ja=Ma  Js— ks
JitHy  Jatle J3+ U3
Quzs—1 ay5—1 ayy=-1

=|as—1 apz—1 apy-11 2.1)
Qp3—1 Ogs—1 51
For future convenience we remark that Eq. (2.1)
entails
37g= =3y + g pa— 3, 37=3i+py—pat3z,
37y=—8jp+py—py—2, 373=3p+pg— g+, (2.1%)
3

3ry==3s+ iy =3, 375=8s+py-pyi+3,
The row- and column-sum in the Regge square-symbo
inEq. (2.1) is $3.qfe=(ry+73+75=7y— 73— 74— 3)/2
= @435 — 2 by virtue of Eq. (1.3). As the arguments of
the square-symbol have to be nonnegative integers to
fulfill SU(2) constraints, we see that a,, Ix N {1,3,5,}
=2, are restricted to assume positive integer values
(actually oy55>1).

114

Now we recall®® the identity

x{(iz +i3 =30 Gt + 1) 1 (o = o) (g + 9! (s = #3)!}1/2
(F1+72 =) Gy +Fa+is+ 1)1 (F1 — 1) 1 (Fg + o)

X3 Fy(jg=d1=F2, e =1, =Jo= Uo;Ja=Fo+ 11+ 1,53 =1 = pp +1;1);

if in Eq. (2.2) we express j’s and p’s in terms of o’s
according to Eq. (2.1), and make use of definition (1. 10)
with a=4, we obtain

(]’1 Ja -J's)
Ky Ha K3

1/2
= (= 1)70" T'( @435, Qo13, Yozs, Qost, Ua13, Vassy Yast)| L/ F,(4)
- P
I3, 35, Uy51) ’

2.3)
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(2.2)

|
where 7 - 7, is integer, as 7 — 7y = Q35 — Q35. Equation
(2. 3) is the starting point of our generalization,

2. 4. Definition: For any o={a, b, c}Cw let us denote
with R, =R,,, the discrete set of points re R® such that
a,(r)-1 and a.(r),yr:lon 7l =2 are positive integers;
by virtue of Eq. (1.1), the remaining a,:0<|ynol <1,
assume nonpositive integer values in R,. Clearly there
are 20 different R,’s and we also define their joining
R=U,R,.

)
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2.5. Lemma: R,#¢Q,¥0; R,N R, =@, vo+ 1. The first
statement is true because it holds when o ={1, 3,5} by
virtue of Eq. (2.3). As for the second statement, let
reR;: (1) on 7#@; thenon7T+#@, o'N 7’'#@. Let
acon7’, beon 1, ceo’n 7’; from Definition 2. 4 it
follows that ,,.(r)>0, so that r& R, because {a,b,c}n 7
=b. (2) on 7=0; then o,(r)>0wy:ixN0ol=2and r ¢R,
because Ixn 7l =1,18

2.6. Remark: In R every B,, is integer; therefore
Qgpe +Bap+ 2B, — 3=37,+ % is integer, so that 67,+1=0
mod 2, ¥c cw. This yields 23,5, 73 +1=0 mod 2, Vo and
Y,— 7p=3%,+37,+1 mod 2, wa+b, These relations will
prove useful in what follows to compute phase factors.

2.7. Lemma: Letaco, beo’; inreR,, F,(a)and
F,(b) have a zero of the second order; moreover,

(- 1)31‘,,-1 /2{ m

L, T} "F0),

(= 1)3rat /2 {c' o, Ta- aacd)} “F,(@)

do not depend on b, respectively a, and F,(a), F,(b) are
related by

{cer}N F(aabc)}F,.(a) =(- 1)“««'—»1Ua{c o, ra- a,,,,c)}F,(b).

2.8)
Proof: Set 0={a,e,f}, o'={b,g, h} and let a,;, assume
a positive integer value; Eq. (1.13) yields

T(Cppas Opng, Uppn) Fple) = T(0ppay Uongs Yopn) Fo(f)
= D@t Qores Aogn) Fp(D)
= (= 1)%aerT (0 ges, Qggpy Ugep) Frla)
= (= 1)%aehT(gor, Qpgp, Qlgep) F (g)

= (= 1)%aeh (0t pop, Cngp, Upep) F (R).
(2.9

As re Ry, all I’s which multiply F,(b), F,(a) are finite;
on the contrary, in front of Fy(e), F,(f), F,(g), F,)
there are two exploding I”s which must be matched by a
second order zero of these functions. As F,, F, are en-
tire functions of each variable, the relation
T(0oser Copn) Fy(D) = (= 1)%0erT 0tz Q) Fo(@) does not de-
pend upon along which direction the point re R, is ap-
proached in R'®’, The proof is completed by making
Q¢ POsitive integer and by comparing F,(b) to F,(g)
through their relation with F,(a).

2.10. Covollary: For any given o, the functions
@y, 1) = (- 1)t e Py 2] 11 F(dm(r))}'iF,(b;r),
cdS o
beo’,
o) = + i -1
onlee) = (- W AR P I T - o) [ Frlasr),

aco,

where Po=Tlyy: xnoi=2 I'(q), coincide if re R : ¢,(a;r)
= @,(b;r) = ¢(o;r), Yaco, beo’,

2.11. Remark: We notice that in the particular case
0=11, 3,5}, recalling Eq. (2.3), we have from 2. 10

(j1 J2 J'a):(p({l,g,s};r).

M1 Mg Mg 2.12)
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It is straightforward to deduce from 2. 10 and from Eq.
(2. 5) the symmetries of the SU(2) 3j-coefficient. In fact,
it is clearly invariant under (1) permutations of 7y, 7y, 74;
(2) permutations of 7y,73,75; (3) exchange of 7;,7,, 7,
with 7, 73,75 and sign inversion of all 7,,a<c w. This
transformation multiplies the coefficient by (- 1)*135 be-
cause ¢@,(b;r), be{0, 2,4}, transforms into

(= 1) et /2va1ss{p (- )} /z{c’pa’ T(Qgeql- r))} “Fya;-1)

for some ac{l,3,5}, and Py, (—r) = Pys(r), Quee(-T)
=1- a,,4(r), Fy(a;-r)=F,a;r) according to definition
(1.10) These symmetries correspond to permutations of
rows and (or) columns of the Regge symbol, and to re-
flection with respect to the main diagonal.

One way to generalize Eq. (2.3) is to continue analyti-
cally ¢,(b;r), @.(a;r), be{0,2,4}, ac{1,3,5}, from
r € Ry;; to r’ € R — Ry3;. In so doing one should take into
account that F,(b;r’), F,(a;r’) develop a zero of the
second order, according to 2, 7; but it is easy to check
that a pole of the second order is provided at r’ by the
factors which multiply F,, F, in ¢,, ¢,. This suggests
that the analytic extension of ¢,, ¢, to the entire R can
be devised and in Ref. 2 a Pochhammer double-integral
representation of ;F, has been used for this purpose.
However, we feel that this procedure—which is powerful
enough to cover even the continuous representations of
SU(1,1)—in so far as the discrete ones are considered,
does not clarify the symmetry of the underlying al-
gebraic structure; for this reason we shall develop a
different method,

Beforehand we want to analyze the meaning of each
R, from the point of view of the angular momentum
parameters. More precisely, we associate to R, the
square-symbol

Uy = 1 Ugqe = 1 Oggp — 1
Upeg— 1 Qyap — 1 Uepe — 1
Qop—1 app -1 04,~1

[a,b,c¢]= (2.13)

where {d, e, f}=w-{a, b, c}; the row and column sum is
Qgp — 2 and, from Definition 2. 4, in R, all variables
which appear in Eq. (2.13) in addition to o, —1 are
nonnegative integers. Sticking to the identification
specified by Eq. (2.1) among j’s, u’s, and r, we want
to see what inequalities hold true for j’s, u’s in R,..

2.14. If R, =Ry 3; we obviously find the SU(2)
constraints:

Jez0 (2. 14a)

. £=1,2,3,

je= el (2. 14b)

J1+d2+i3=0, (2. 14c)
Malks M3 Pip2 < o’ (2' 14d)

. i i

T papsl 2T ugugd 5T pgpy]
where Eq. (2.14d), which we have borrowed from Ref,
17, implies the well-known triangular relations, be-
cause uj+ iy + L3 =0 provides the only constraint over
the sign of u’s.

2.15. Let r belong to any one of Ry35, Ryg;5, Rya;
Ry, Rz, Rggs; Roye. In each case we find the same in-
equalities of Eqs. (2. 14) provided j, is replaced by
—Jje—1, ¥t =Z, where
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Rogs Ryps Ry Ripg  Rygg  Rpgs Ry

== {1} {2} {3} {2,3} {3,1} {1,2} {1,2,3}
For instance, if re Ry, 0p==F1—js—js—122 im-
plies (-j;—1) +(-jy—1) +(—j3~1) =0, etc. Therefore,
the extension of the 3j of SU(2) to these other regions of
R, where the SU(2) inequalities are satisfied but at least
one j assumes a negative value, is just the extension
considered in Refs, 5,6,7.

2.16. Finally, if r belongs to one of the remaining
R,’s, setting for conveniencej,=j,+3, £=1,2,3, we find

If€l+%si“€|9€=1y213, (2.16&)

_Maps gL ny Bt e ay B2 (00 Lo
|#zﬂsi(|’hl+2)+luauil(lhl 2) l‘11‘12|(|13| =0,

(2.16Db)

and in each region the sign of only one f and of all u’s
is specified as follows:

E=1 | 213

r€Rys|Rogs|Ryss: Je=3,  MeS—1, L,=+3,
Ryps|Ryys|Rogs: Jp 232, Me>+1, p,<-3,
Rygs|Rogs |Rotat je<—3, Me=+1, p,<-3%,
Rogs|Roga |Rogg: Jp <=3, pesS—1, p,=+3,

(2. 16¢)

neql,2,3}- & Here we have quoted the stronger in-
equalities; notice that Eq. (2.16b) provides only one
relation for each R,. It is easily checked (see Ref, 2)
that inside the subregions of Ryy3, Ryy5, Rogs, Ross, Ro12, Razs
where j, <3, £=1,2,3, the parameters j’s, p’s satisfy
the inequalitites which characterize SU(1,1) unitary dis-
crete representations having a nonvanishing 3j-coeffi-
cient, The remaining subregions of these R,’s, as well
as the whole of Ry,5, Rg13, Ro3s, Ria3, R3s5, Ro15, give rise
to the same SU(1, 1) inequalities with sign inversion of
at least one j, namely they correspond to the same ex-
tension!® as the one considered in 2. 15 for the SU(2)
case,

For future convenience we denote with R, 0={0, 1, 2},
{0,1,4},{2,3,4},{2, 3, 0},{4, 5,0},{4, 5, 2} the subset of
R, where j, <+3, £=1,2,3, and write R(SU(1,1))

U, R,.

3. THE GENERALIZED FUNCTIONS

In this section we shall construct a set of functions in
R which coincide with the 3j-coefficient of SU(2) in Ry3;;
it will turn out that in R(SU(1, 1)) these functions coin-
cide within a phase with the 3j of SU(1, 1) which couples
discrete unitary representations.

3.1. Definition: We introduce the step function 9(o;r),
Vrc R, such that 9(o,r)=1 if o (r) >0, while 3(o;r)=0
if a4(r) <0; notice that 9(o;r) +9(c’;r)=1Vo,

To simplify our notations, it is very convenient to
use the function

~ _ {I'(ae(x))Plsm
L@ = Toplinadr) D (ay O)F @ -

(3.2a)
As we are concerned with integer values of o,’s, Eq.
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(3. 2a) amounts to modify the I'-function by replacing its
infinite values at the poles with the corresponding
residues; this procedure has been used in Refs, 5,6,7
to extend the 3j of SU(2) to negative values of j’s. Eq.
(3. 2a) must be implemented with the following phase
prescription:

{F(ay(r)) /2 = expl— 3im9(0” ;1) (1)} | T(ag(r)) | 172

This is enough for our purposes as we shall not run into
noninteger powers of s different from .

We notice that
Foy(r))T(ap(r)
= exp{~ i1[9(o;r) a4 (r) +9(0";r) ag(r) I} (3.3)
Moreover, the following useful identity holds Va € w:
(1/2) TCZuE_a{s(T;r)a,(r) +3(7";r) ap (1)} = - 3 mod 2.

(3.4)
By means of definition (3. 2) we may cast the functions
@,(b;T), @,a;r), reR,, aco, beo’, defined in 2,10,
into a more symmetrical form; recalling 2. 6,. we obtain
easily

0s(b;) = explin(= 37, + DHQ, B0 2F, (b;r), beo,

(3. 5a)
@na;r) = explin[37, - i+ au(r)]HQ,(a;1)} °F,(a;r), aco,
(2. 5b)
where
Qa;r)= I T(ay(r)) (3. 5¢)
TCwe~a
Qula;r)= M T(1 - a,r). (3.5d)
TC W=z

We postulate now a set of equations whose solution
will provide the basic ingredients of our construction.
In fact, the functions F,(a;r), F,(a;r), acw, which
appear as unknown in these equations, can be chosen in
such a way that—upon multiplication by suitable factors
as specified in Definition 3. 11—they yield the desired
generalized functions. The equations read, if re R,

I F(arayye@®) Fyold;r)=(=1)!70lren®
e

X CUG?F(a‘,_c,Ua(r)) F,(a;r),

(3.6)

vVr:2<|{7noi<3, and ¥ac 7/, be 7. These relations—
apart from the phase (- 1)'"¥!'—are obtained from Eq.
(1. 13) by considering in turn each a,(r)>0 and by re-
placing I'(a) with f(a).

3.7. Lemma: Equations (3. 6) are compatible and ad-
mit the following solutions at r e R,:

i,(a;r) =F,(a;r), Vaco’, (3. 8a)
F (a;r)=F,(a;r), Vaco, (3. 8b)
By = (0% T D) Fya),

vbeo, aco-b; (3.8¢c)
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F(b;r)=(-1)*e1/2 1

r(l - aabc(r» Fﬁ(a;r)’
cEw~{a, b}

vbeo’, (3. 84)

Proof: We delete the proof of consistency to Appendix
B. Here we show that there are equations of the system
(3. 6) which are satisfied by the choice (3.8). Letaco

7!, beo’ nTin (3. 6); this implies lon7i=2 and
o=(onT)ua, T={oNT)U b; therefore, if ce1’, we have
Aprepiye= Qenmye>0and if cet: I{7-cluainoi=
so that @, ;,> 0. According to definition (3. 2), it
follows that f(a,) = I'(e,) for every y involved in (3. 6);
moreover, I'(@nnya) appears on both sides of (3. 6)
and 0= Qp_y) . Therefore, F,(b;r), beo’, and
F «a;T), aco, satisfy Eq. (2 8). As for Egs. (3.8.c,d),
they follow from (3.8.a,b) and from Egs. (Blb), (Blc)
of Appendix B.

aco’'-b,

Remark: The consistency of Egs. (3. 6) shows up also
from the fact that the rhs of (3. 8c), (3. 8d) is actually
independent of a € 0, respectively aco’, In fact, we
may write these equations as follows:

(_“ )Sr +1 /2F (a I‘)
c. aco r(l aacd(r)) ’

f,(b;r)ﬂ“(a,(r)){ 11 F(am(r))}

deo-b
Vbco, aco-b; (3. 9a)
- — 1)l 2 (o
F,lg;r)=T(1 - au(r) {’cgv ri- am,(r))} (ﬁ_—)-—l".f—i%%) s
E g o d&e Qecd
vgeco’, eco’~g; (3. 9b)

then we recall 2, 7 and realize that Egs. (3.9a), (3.9b)
hold alsc when a=b, e=g, In this particular case we
know from Appendix B that, if re R, then

Fy(b;r) = = Q,(b;1)F,(b;r), wheo, (3.10a)
Fog;r)=-Q,g;0)Fy(g;r), vgeo. (3. 10b)
8.11, Definition: rcR, acw, we set
&,(a;r) = exp{in[4,(r) + A@;r)HQ (@00} 2Fy(air), (3.11a)
@,(a;7) = explin[ v, (r) + Ala;r) [HQ, (a;r)} /2 F (a;r), (3.11D)
where
ipu(r) =37, -~ 1 + 01135(1') . _
v{r)= 3'r: + ;135(r) if ac{0,2,4}, (3.11¢)
zpa(r)=37¢+1 ifaE{1,3,5}’ (3. 11d)

v (r)=37,+3

Afa;r)
= % b.czéx{S({a’ b’ c};r) aabc(r) +8(w - {d’ b’ C};r)aw-(a, b,c}(r)}y

x=11,8,5} if ac{0,2,4}; x={0,2,4} ifac{y,3,s}.

(3.11e)
This choice of phase factors will be justified a posteri-
ori as we shall show in 3. 13 that it forces all &,’s,

®,’s to coincide in R,3; with the SU(2) 3j-coefficient;
this clarifies also the privileged role of Ryg;.

3.12. Theorem: For any ¢, recalling the definition
of ¢(o;r) given in 2,10, if » e R,, we have

J. Math. Phys., Vol. 1§, No. 9, September 1974

A. D'Adda, R. D'Auria, and G. Ponzano: Symmetries of extended 3/ coefficients

1547

®,, ,(a;r) = explin¥, ,(a;r)}e(o;1),
where
¥, (a;r) = v,(r) -

=y (r) +37,+3 +Ala;r), mod 2,

ifaco
{3.12a)

$7,+1+agu(r)+A(a;r), mod 2,
ifaco’,
¥y(a;r) = ¥, (a;7) = Oac oy (0, 2,400 (e (1, 3,51 MOd 2.

(3.121)
Here, 8,c,=1ifac ™, §,c,=0ifag ™

Proof: Let aco; then, from Eq. (3. 8a), f?",,(a;r)
= F (a;r). Therefore, comparing Egs. (3.11b), (3. 5b),
we obtain (3. 12a) for the case aco. On the other hand,
if aco’, we may use Eq. (3. 10b) so that (3. 11b)
becomes
&,(a;r) = explin{y,(r) + Aa;r) + 1THQ,(@;0)} /2Q,(a;r) Fla;r).
Now notice that

Qar)Quer)= I Tlam)f(an(r);

therefore, from Egs. (3.3), (3.4), (3.8a) we obtain
&,(a;r) = explin]v,(r) + Ala;r) - 21HQ,(a;1)} /2 F,(a;r)

and by comparison with Eq. (3. 5a), we get (3.12a) in
the case aco¢’. Then consider the ratio ®,(a;r)/®,(a;r);
from 3, 11 we have

. 1/2 1= .
(o) ~einlot) - QIR E
Using Eqs. {3.10), (3.3), (3.4) we deduce
ey 172 £ (e
{g’: EZ; 3} ;:EZ; :; = —{Qp(a;r)Qn(a;r)}l /285

LT
= €xXp Z'é(aaeo“ aaea) »

which leads to (3.12b) if we recall (3.11c, d).

3.13. Corollary: If r € Rz, then: &,(a;r) = &,(a;r)
= {}1 f,?z f;'g}, VYa< w, provided we make the identifications
specified by Eq. (2.1).

In fact, by direct computation of A{a;r), Eq. (3.12a)
yields for anyacw

¥, (a;r)=3 2

ry+1
s 0

mod 2, if |on{l,3, 5} =0,

(3.14a)
=3%w 10,2, 41 *+ Oacon 10,2,41>
mod 2, if [on{L,3,5} =
(3. 14b)

= 2 ¥+ B,
bcor il 3,51 ° e ol 11,3, 5}

mod 2, if |on{l,3,5} =2,

(3. 14c¢)
if lon{1,3,5} =

(3. 14d)

=0, mod 2,

Therefore, if 0={1,3,5}, we get from Eq. (3.12b):
¥, (a;r)=¥,(a;r), Yacw, and we have just to recall 2,12,

3.15, Covollary: If re R(SU(1,1)), then &,(a;r),

@ ,(a;r), Wac w, coincide—apart from a phase factor—
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with the SU(1, 1) 3j-coefficient involving the discrete
unitary representations j,, £=1,2,3, specified by Eq.
(2.1).

In fact, by means of Dougall’s formula, it is

straightforward to check that the Clebsch—Gordan co-
‘efficient of SU(1,1) with discrete unitary representa-
tions C’i1 {2 3, divided by V-2j;-1, as computed in
Ref. 2, is related to ¢(o;r) as follows:

CiL iz I3

[TRD) -u3
V= 2j3-

= (= 1y21/2p(2, 3,4};r) [Eq. (8.11), Ref. 2]

= (- 1)*012%({0, 1, 4};r) [Eq. (3.15), Ref. 2]
= (- 1) 759(0,1, 2};r) [Egs. (3.18), (3.20), Ref. 2]
=(-1)"+"59({0,2,3kr) [Egs. (3.17),(3.19), Ref. 2],

and we guess

= (= 1)¥212p({2, 4, 5};r)
= (= 1)*0*12p({0, 4, 5};1).

To complete the argument, we recall 3.12,

Remarks: At this stage it is clear, in the light of
definition (3. 2a), that within the regions specified in
2.15 all @,’s, ®,’s coincide—apart from a possible
phase—with one of the extensions considered in Refs.

5, 6,7 of the SU(2) 3j-coefficient. Similarly, inside the
regions considered in 2. 16 which are not proper SU(1,1)
regions, these functions coincide—always within a
phase—with SU(1, 1) 3j-coefficients in which at least
one j is replaced by -j - 1.

All ,’s, ®,’s are acceptable generalizations; they
coincide essentially with the GWC of Ref. 2 and with the
3j-symbol of Ref. 3 provided the corresponding varia-
bles are restricted to R through a suitable limiting
procedure,

4, SYMMETRIES

To study the symmetries of &,’s, ®,’s it is con-
venient to consider a suitable linear combination &(r)
of these functions. We choose

o(r)=% a(_:%z& o [®,(a;r) + @ ,(a;1)

+ 2 [®)ar) - &,@0)] . (4.1)

ac {0, 2,4}
As will soon be clear, 1&(r)i=|®,(a;x)!l =12,(a;r)i,
Vac w, ¥r e R; moreover, the phase of ®(r) keeps un-
changed the features which are shared by the phases of
all &,’s, ¢,’s, as will be specified in 4. 2. These condi-
tions do not determine ®(r) uniquely; the additional

degree of freedom might be exploited to produce a func- -

tion which enjoys other properties shared by SU(2),
SU(1, 1) 3j-coefficients., Here we shall not enter into
these questions as our purpose is merely to unify the
analysis of the symmetries of &, ,’s

4.2. Lemma: &(r) = exp{in¥(r)}olo;r) if r R,, where
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Y(r)=3

acfifap o M0 2, 1 lon{1,3,5} =

=3%pn (0,245 Mmod 2, if [on{1,3,5} =

=3 2 7 +1, if lon{1,3,5} =

mod 2,
a€of11,3,5)

=0, mod 2. if‘cn{l,s,‘&}]=

These formulas can be checked by direct computation
of &(r) by means of Eq. (3.14) and 3.12,

4.3. Remark: 1t is clear that through Eq. (4.1) we
made a sort of average over the phases of &,’s, @,’s,
without changing the phase when r ¢ Ry;;; therefore,
&(r) coincides with the 3j of SU(2) in Rg;.

4.4, Definition: We consider now a group G(3j) of
automorphisms Py, of R onto itself, provided by the
following transformation: (1) permutations Pj; of com-
ponents of r''’ € Rwhich send r‘!? into a different point
r? e R; (2) permutations of components of r'!’ and
sign inversion of all !, Va e w; these transformations,
which we denote with Pj,, send r'!’ into a point r® e R.
Clearly, G(3/) ~S;® S, and its order is 6! - 2 (=1440).

4.5, Remark: It is worth noticing that the elements
of G(37) can be partitioned into 20 subsets of 3!-31-2
(=72) elements each, In fact, if r“’cR,, , there are
72 different P;, € G(3j) which send r‘ into correspond-
ingly different points r®’ e R,,, for any given 0,. For
instance, if 0,={1,3, 5}, we have r'®

= (@@ B PO 1,;2) r(” , 7)€ Ry, provided we set
either (,r(z) ,,,(,z)’,r(z)) S (,,(1) 7y, (D @D )
=S (’V“) ,;,.(1)’1. 1)) or (1"(2) ,‘,.(2) ,;,.(2)) 33( (1) ___?,21)’
—'r“’), (7’(2’ 7 D, riy = §y(- 'r“’ r(“,—é”), where S,
denotes any element of the permutation group over 3
objects and («,v,w, - -+) denotes an ordered set. In the
particular case 0,=0,={1,3, 5}, recalling 2.11, we see
that the corresponding 72 elements of G(3j) coincide with
the symmetries of the SU(2) 3j-coefficient.

4.6. Remark: K r'c Ry and r®=P,r™ e Roy, we
want to point out that (1) P;,= P}, implies {2’ =7}"), so
that if e o,, then b €0y and if ac 0} then beof; (2) Py,
=P}, implies 7 =—r{, so that, if aco,, then beo],
while if a€ ¢}, then b c0,. These remarks stem directly

from Definition 2, 4.

4.7, Theo'rem vr'le Ry, VP, G(3)), setting r{?
=Pr'V) we have &(r®) = exp {in¥*(r‘?, r‘z’)}é(r‘“),
where ¥*(rV ri¥) = \Il(r‘z’) ¥(r'?), and \Il‘(r“) r®)
_‘I,(rm) ‘I"(r(“)+01 (r(i))

Proof: (1) Pyy: Accordmg to 4.6, choose any ac g, and
b c oy such that (r{?),=7;"; from 4. 2 we have &(r{?’)

= exp{in¥(r ) }plo,;r ). Recalhng 2.10 and Eq. (3. 5b),
we deduce

Plog;r ) = 9 (a;r®)
= exp{in[3(r®), - 1 + Ayt Q@ v ) Fola;r?);
then it is easily checked that aq,(rf‘”-): aoy(r't),
Qula;r) = Q,(b;rY), F(a;r®)=F,(b;r'D, where the last

identity stems from Eqs. (1.10). Therefore ¢(os;r )
= @(oy;vV) = exp{- irk (r ) }B(r V).

(2) Pj,: Choose any ac 0,, beoj such that (r'?),
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ddbc

adca

¥IG. 1. Geometric representation of Regge symbol [a, b, cl.

= —»{1); arguing as in (1), we have now Q,(a;r?))

=Q,(b;r™) and, recalling Egs. (1.10), F,(a;r®)

= F(= Be(=1?),¥c c w = @) = F(=~ B(rV),Wc e w - b)

= F,(b;r'?). Therefore, taking into account Eq. (3. 5a),
and noting that by virtue of 4.6 acpz(rf,”) =3 +Teca(T),
=3 = Jaco ¥ = 1- ag(r'"), we get ¢loy;r®) = g, (@;x)
= explinag, (r ")}, (b;r ™) = explin] ag, (r'V) - ¥(r )]}
x3(r'th,

4. 8. Covollary: For any given ¢, the numerical tabula-
tion of &(r), reR,, provides the complete tabulation of
&(r), YreR,

This follows from 4.7 and from the remark that vr
eRaz,(there are r'Y e R,, P, « G(3)) such that r'®
= Pltzr 1).

In particular, the existing tables of SU(2) 3j-coeffi-
cients cover a portion not only of R,35, but of every R,,
as, taking any rV e Ry, we have VP, € G(3j):

B(r? = Prh) - explim¥x ), 10} (ji Iz Ja),
By He Us
where j’s, p’s are given in terms of »'* by Egs. (2.1).
For the sake of possible convenience, we quote the
phases ¥*(mod 2) in the following table for each possible
0, vPeR,:
2 Tk o9°

[¢3}

0y \1,4-(1_(1)’ ri?)) i,-(rﬂ)’ ri'&))
{133’ 5? 0 j1+j2+j3

{a, 3, 5} Ja=Js+ iy Jitpa= i
{a,5,1} , acH0,2, 4} i3 -4, + us Jat g =y
{a, 1,3} Ji=Ja+us Jatpy— iy
10,2,a} Bi—fo=d3—% |j1=jo—ps+3
12,4,a} , a€{1,3,5t uy - p3—ji =% | jp—ds~ 1 +%
{4,0,a} M3—ly=Ja=3 |fs—F1= wa+%
{0,2,4} —ji=da—Jjs~%|%

We notice that the phases ¥* which belong to 0,={0, 2, 4},
{0, 3,4}, {0, 3, 5} coincide respectively with those of
formulas (18.4), (18.5), (18.6) of Ref, 6, apart from a
possible + 1 discrepancy whose origin can be traced
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back to our particular definition (4. 1).

By restricting the results of 4. 7 to R(SU(1, 1)), it is
possible to classify the symmetries of SU(1, 1) 3j-
coefficients involving discrete unitary representations,
Here we count them, while in Appendix C a particular
phase definition of the 3j of SU(1, 1) is proposed and its
symmetries are characterized explicitly.

4.9. Covollary: wr't’e R(SU(1, 1)) there are in general
108 distinct points (r®* included) r e R(SU(1, 1)) such that
1@(r)] = 1@ (D).

In fact, by virtue of 4. 5 and 4.7, there are 72-12
distinet points in the collection of the 12 regions R, con~
sidered in 2, 16 where & has the same value within a
phase; for every one of these points, which does fulfill
SU(1,1) constraints, there exist in general seven others
which do not, because they are obtained from the given
one through G(37) operations which change the sign of at
least one j parameter, as remarked in 2, 15. Therefore,
the symmetries of the 3j of SU(1,1) with generic dis-
crete unitary representations are in number of 72-12/8
=108; some of them have been pointed out in Ref, 3.

5. A GEOMETRICAL REALIZATION OF REGGE
SYMBOL AND ITS EXTENSION

We conclude our discussion by presenting a possible
generalization of Regge square-symbol, As explained in
Sec. 2, to each R,=R,, we associate the square-symbol
of Eq. (2. 13) whose structure is characterized by the
property that the sum of each column- or row-elements
with @, ; 4+~ 1 equals - 2; these linear relations are
the only ones which involve oy, ;, ) inside the class 9y
of all possible relations defined by Eq. (1. 5). Our aim
is to find a structure which takes into account all rela-
tions of Q1 in a way similar to that of Regge symbol,
so that the elements of G(3j) correspond to those
permutations of elements of the structure which map
@, onto itself, Clearly in Q; there are altogether 20-6/4
=30 elements.

fabcd} %abd

g~

caf

FIG. 2. Geometric representation of the modified Regge
square-symbol d, e, f).
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P,

b, -

P
Ps

FIG. 3. Kinematic variables of 5-point dual amplitude.

The looked for structure turns out to be a configura-
tion § of 15 points, 15 planes, and 20 straight lines in a
three~-dimensional Euclidean space, characterized by:

(1) a one-to-one correspondence A; exists between
straight lines and the 20 a,’s, and between points and
planes of the configuration and elements of {;.

(2) If an element of O corresponds to a point (plane),
the latter belongs to (contains) the four straight lines
associated to the a’s which are involved in the given
relation.

(3) Each line contains three points and belongs to
three planes.

Clearly, the Regge square-symbol [a, b, ¢] corre-
sponds under A, to the portion of @ shown in Fig. 1
where points, planes correspond to the rows, respec-
tively columns of [a, b,c], and w={a, b,c,d,e,f}.

To characterize the whole configuration and prove that
it does exist, let us define a modified square-symbol
(d,e,f) associated with each [a, b, c]:

Ogpg — 1 Qpe — 1 Qgpy = 1
<d’ e;f) =\ Qpea— 1 Qpoe — 1 Qpep — 1
Qoar =1 Qpge— 1 Qs ~ 1

(5.1)

It is easily checked that the 72 symmetries of [a, &, ¢]
are preserved by (d,e,f); namely, induced permutations
of rows, columns and exchange rows with columns of
(d,e,f). Furthermore, the structure of (d,e,f) suggests
we define the collection ¢, of the 15 sets A (4,5

={a, :{a, b}c x} and of the other 15 sets A ,.i, 5 =10 : X
cw-{a,b}}, va*+bcw. Inthis way we see that, while
we had to add a(,,4,.)-— 1 to each row- or column-sum of
[a, b, c] to characterize elements of Qi, in the case of
any {d, e,f) we have to associate a4 , s with each row
or column of {d, e, f) to find elements of 0; for instance,
the rows of {(d, e, f) characterize respectively 4 (4, ;,
Aoty Ate,ar and its columns: Ao (q, 11, Aw-is,a1 Aw-ldye)-
Therefore, in the same spirit as we represented [a, b, ¢]
geometrically in Fig. 1, we may represent {(d, e, f) in
Fig. 2 where points correspond to rows, and planes to
columns of {d, e, f).

This geometrical representation can be generalized
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as follows. In the five-dimensional space X of the
homogeneous real variables (xy, %y, X3, X3, ¥4, X5), let us
define the linear varieties

thhdz{xasz:xc}’ (5. 23.)
Via oy = {20 = %4= %= %}, (5. 2b)
Ve, 51 = 1¥a= %3}, (5. 2¢)

Vabcecw=1{0,1,2,3,4,5=1{a,b,c,d,e,f}. Then con-
sider any two-dimensional li_near variety T 1n generic
position with respect to all V’s and define

V=VnT, VV. (5.3)
Of course, Vg, . are straight lines, while V, ;) and
Vi-ta,5) are respectively points and planes in XN T.
These elements form the configuration 2 whose inclu-
sion properties'® are

V(a.b)c V{a,b,sh V{a,b,s. t} Vs,tew—{a, b}; (5~ 43.)
V(P.d)c V(G'D'C)C Vw-(l’.a) vp’qe{ayb,c}’ (5- 4b)
Voute, 52 Vis, 01 Vigge1 VS, tcw - {a, b}- (5.4c)

Therefore, the one-to-one map A, : Q*{a,}, @, defined
by

V(a.b.cl ™ Qgpey, VG, b; cew,

Via, 01 = A ta, 51 (5.5)

Visnta,0d = A w-ta,0)
provides the generalization of the modified square-
symbol, as represented in Fig. 2, On the other hand, if
r:{e} ~{a,} is the map defined by

(0,2,4—[1,3,5],

(5. 6a)

Q35 ™ gy,
and by the constraint

)\(aql) = 0, = Mag) = ag,

then Ay =2AXy: ﬂ—»{ao},Qi is the one-to-one correspon-
dence introducedin (1), (2), (3) which yields a general-
ization of the Regge square-symbol as represented in
Fig. 1.

From the previous discussion it follows that the ele-
ments Pj, of G(3/) permute lines, points, planes of Q
respectively among themselves, while the elements Py,
also exchange points with planes.
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APPENDIX A: CONNECTION WITH VENEZIANO
FIVE-POINT AMPLITUDE AND) PROOF OF (1.8)

To describe the scattering of 5 spinless neutral parti-
cles (Fig. 3) with 4-momenta p;, i=1,2,...,5, the fol-
lowing amplitude has been proposed recently?’:

B(y12, 723 Y341 V150 V51)
= [t f Ly wmanty st x) Tt - )Tt
X (1 - xy) 1572870, (A1)

where
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yi=Ysi=1+(py+p ) == 1+2b;p; Wi#j=1,...,5,
(A2)

having chosen the metric p% =-1. As energy-momentum
.- conservation yields

5
:Zjipe 0, (A3)

only 5 y;; are linearly independent and vy, ;44 (Y5, 54 = ¥51)
have been selected in (Al). The main properties of B
can be summarized as follows:

A4. B(Y 12, Yo3, Y34y V155 ¥51) 18 invariant under any
cyclical and anticyclical permutations of labels 1,...,5;
this property reflects the symmetry of Fig. 3.

A5, The only singularities of B are simple poles at
nonnegative integer values of each vy, ;,; moreover, B
has poles in y,, ;,; and vy, ;,; if and only if {f,7 +1}
n{j,j +1}=0. This property is known as “duality.”

A6. The integral (A1) can be written in terms of the
F function introduced in Eq. (1.6) as follows:
B(12, Y235 V34> Y15, V51)
=T(- Yiz)r(— 723)1"(— Ya4)r(- Y45)r(‘ ¥51)
X F(Y51+ Y12, Y12+ Y235 Y23+ Y34, Y34+ Y455 Va5 + Vs51)-

Therefore, from A5 it follows that F is an entire func-
tion of each variable y;.;, ; + 74, i41.

APPENDIX B: PROOF OF CONSISTENCY OF
EQS. (3.6)

Bl. We show that, given any ¢,bcw, a#b, rcR,,
then F,(b;r)/F,(a;r) computed from Eq. (3.6) does not
depend upon any T such that be 7, act’, |Tnol=2,3,
In fact, we have

HcET f;(a(r-c}ua(r)) ncET-b f(aabc(r))
Neer D@ ranyelr))  Megr T(@(rapye(r)
and recalling Eq. (3.3)
~ -1 ~
r =
(L, Fermo) ™= 1, Few®)

xexplin[sa, b, c};r) e (r) +9a, b, c};r) ey, 4, op(0)}

- { I, T (argpe(r) }

xexp{incEI'[T'q [s({a, b,chr) + a(a'b,cy(r)]}

because the following identity holds mod 2:

;1) ax (1) +9(x";T) aye(r) = 9(x;T) + Oye(T). (Bla)
Then by direct computation we obtain

apt I, % n,00=37, +3 mod 2,

cE@_ﬂs({a, b,ch)= | TN 0] + 8, pbpe, mod 2, (B1b)
Therefore

DD explin(r, s b icubict 1, Floo)),

which is independent of 7. Similarly, we may prove the
inverse relation
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ljn(a-r) = explin(37, - 3+ 6,co0sce)t 11 Flay(r).
Resr) e e

(Ble)

B2, We show that, Va,b,ccw, atb#c# a, the ratio
Fy(b;0)/ Fyle;r) | ={Fy(b;r)/Fola;n)} - {Fylasr)/Fyle;r)}
does not depend on a. In fact using Eqs. (3.3), (Bla),
we get

Fyb;0)/Fy(c;m)],
= explin[37, + 37, + S, co(Baco + Boca) It
xexplin[s(la, b, c};r) + %-(a,;,,c](r)}baféw_c F(ay(r)).
We notice that 9@, b, c}) = 6,c60,c0 + Oac ol Brcode

co
+ 6lrEd'ach)’ mod 2; so that 6060‘(61160 + 6cEa’) “"Sﬁa, b) C)}
=1+ 04c O mod 2. Therefore,

Fy(b;r) : \ ~
flulf & 5l L ~-1.5 — T .
Fyle;r) explin(37,~ & + Sueordecoll et g - ()

(B2a)
Similarly, we obtain
Fo(b:1) ) . N
Mmoo/ Py 5 T b
f‘,.(C;I‘) exp{lﬂ' (371; +z+ 5b<—:a ch)} cExl‘;:Iw-b (ax(r)) (B2 )

B3. Finally, we show that Vb,cew, b#c, {F(c;r)/
Fy(b;r)}-{F,(0;r)/F,(c;r)} is independent of b, In fact,
by means of Egs. (Blc), (B2a), (3. 5c), this expression
takes the form

exP{iT’[(?”’b -z+ Spcoloca) + (37— 3+ 6b(—30‘6c€o’) ]}Q,(c;r);
therefore

Fn(C ;1)
Fy(c;r)

and, similarly

= exp(ind,cq)@y(c;1), (B3a)

Fp(c ;1)

FulcsD) (B3D)

= exp(i” 50(—: ,)Q,,(C ;r) .

APPENDIX C: SYMMETRIES OF THE SU(1,1)
3/ COEFFICIENT WITH DISCRETE UNITARY
REPRESENTATIONS

To catalog the symmetries of the SU(1, 1) 3j-coeffi-
cient with unitary discrete representations, it is con-
venient to use the cycle notation to represent permuta-
tions of point-vectors r, r'!’, etc. in R; for instance,
the operators P%, =+ (052)(34) € G(3/) send r'"’ €R into
riP e R, where (r{?), =27, (), =270, (r?), =z7{",
(7:(32 ))* =+ 1’;1), (722))*= ] 1’;1)’ (7;2))* =% 7’;1)-

We define the SU(1, 1) 3j-coefficient as follows:

J1 Ja s =id(r), v¥re R(SU(1,1
(m By us)svu.n ), ST

Recalling 3. 15, 4.2, we obtain the phase relative to the
corresponding Clebsch— Gordan coefficients of Ref. 2:

(C1)

<j1 Ja js) =exp(iﬂp)§—{‘-11——1—-3ﬁ (c2)
M1 Ko Hz/suiy,1) -2%3-1"~
where
P=fa+ = Ly ifr€§01zuéoza,
(C3)
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- ©1)(34)es)

-
"

-t
LA S g

(026)(135) s S
= (4s)12)(03)
FIG. 4. Usual (non-Regge) symmetries of the 3j of SU(1,1).

p=ji—Jja=ts U re Ry U Ry U RogsU Koy

We like definition (C1) because the usual (non-Regge)
symmetries of the SU(2) 3j-coefficient hold also in phase
in the SU(1,1) case.

In fact, these symmetries read
(ji J2 I3 ) (- I)J(jii Ja fis)
Ky B2 H3/svd, 1) By My His/svdy,n
(- 1)’1*’2*’3( Ji J2 Js )

— B T B/ svan
where J=0, J=j;+j, +f3 if (1,%5,75) i8 an even, respec-
tively odd, permutation of (1,2,3); from Eq. (2.1) it is
clear that the even permutations of j’s are realized by
(024)(135), (420)(531), while the odd ones are realized
by ~ (45)(12)(03), - (01)(25)(34), - (23)(14)(05) and the
sign inversion of u’s by - (01)(23)(45). All these opera-
tors are in G(3j) and send any r'*’ e R(SU(1, 1));
into some r® < R(SU(1, 1)) the phases are easily
checked by means of 4.2, 4,7. It is worth analyzing
into which region Ro, is sent a point r? e Ry by
these operators, All cases are summarized
directed toward vertex 0, if, Vr''’c Ko, : r'¥ = Pjr?
€ Rq,; the edge is obviously labelled Py,. Notice that,
for each B,, there is a particular Pj, such that r®®
=Pr'YeR, it r' e R,; for instance, Pj,= - (23)(05)(14)
ifo=1{0,1, 2}

From 4. 9 we know that the symmetries (C4) do not
exhaust all the invariance properties of the SU( 1,1) 3~
coefficient. To complete the analysis, we may search,
for any given R,, all those elements P, of G(3j) such
that, if r'Pc R, then r'”=P;,r'’ ¢ R, To this end we
notice that, setting {2y, a;,a,}=1{0,2,4}, a;=a; +1,
ie€il,3, 5}, the regions R,’s are of the type }%

If re R, 4,4, according to 2.4, the following pattern

P of inequalities holds:

G0 620 01"
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Vay=Yay >0, 74y=7,,>0, Yoy =76 >0
P= r‘o'y"a>0’ Yay=7a >0, rai—'rus:>0 , (C5)
Tay= Va5 >0, Vgy—74>0, Yoy~ ¥as >0

and if r is further restricted to R,, apa
'rao - ral 2 - 1; (CG)

rn4"'a52‘ 1, ™

, we also have

Clearly the 72 elements of G(3f) which send rV ¢ I%ao_ apag
into r®e é“o*“z-“z permute rows, columns, and rows
with columns of p; however, only part of them yield r‘®
which fulfills (C6), (C7) as well. In fact, if r'¥ ’
= (aa)r®, then 7,0 - 7 =7V — ;1) <1, 50 that (C6)

is satisfied only in the particular cases 7)) — 7,1’ =21, 0;
similarly, the permutation (2,a;) leads to r'¥

if ) )
eRamcz’az only if a5 = Ve, =+1,0,

For the time being, let us restrict ourselves to con-
sidering r'!’ satisfying (C5) and

rao—raizo,

(C6")
(cm
so that (C6’) in general is violated by r'®’ = (g,a,)r", and
(C7) by ¥ = (a,a;)r'!, We notice that r'? = (ga,)rD
satisties (C6') if 7,3’ — 7’ =7{1)— 7]’ > 0, while the
analogous conditions for the operators (2;a,), (ayaa,),
{a42,0,), are, respectively

ra4 - 7’“5 = 0)

(1) _ 4 (1) (1) _ 1) (1) _ 1)
Yay ~7a, 20, 7' -74, >0, 7, — e =0,

Similar conditions are obtained for the permutations
(as2y), (a395), (a3050,), (a30,05); they read, respectively

) _ (1) (1) _ (1) (1) _ 41
Yag = Tag =0, Yoy =%ag 20, 7g, =7, 20,

(1) _ 4t
Yag — 7o 20,

fa, - 1"2
]
R.’.’u
R‘l
Rz
Tag ~Tay
k
B
Tag- T,
iy \
R
B)

FIG. 5. Subregions R,, R" of &, , , and action of elements of
pﬂ'pns n=1,2,3. v
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Therefore, let us call R,, R", n=1,2,3, the subregions
of R, , . . Where (C6"), (C7’) are satisfied in addition to
the inequalities (Fig. 5):

R,: rno—'razzo, Yoy = Vay> 0;

Ryt 74 =74, <0; (C8a)
R;: 'r,,z—raiso;

R 74 = 7,20, 74 =7,>0;

R?%: Vo= Yoy <0; (C8b)
R3: Vay = Vo, < 0.

Then we call P, P" the sets of those permutations over
o, 78, 7)), respectively (73}, 74l 75}), which send
r'¥ e R, respectively r'’eR", 5=1,2,3, into r'¥
which satisfies (C5), (C6’), (C7’). It is easily checked

that
P ={1, (a,2y), (a12)},

P=11, (aa,), (aga:a,)}, (C9a)
PR={1, (a,a,), (@y218,)},

pl ={n) (a3a4): (0305)}’

PE={1, (asay), (a3a5a4)}, (C9p)

P2=A{1, (a5a5), (@;a4a5)},

where 1 denotes the identical operator. Notice that the
elements of n; commute with those of "2, so that in
Pn;® P72 there are 9 distinct elements and each of them
maps any '€ Rqy N R™ into distinct r® € Rag, 0y, 05
From Fig. 4 we realize that, if r'" € R, 000, then

) = (@,25)(2,25)(@,8) TV € Ry oy,
the 18 operators which map r‘“eR,un R™ into 18 dif-
0

ferent points of éaoﬂzv“t (r'*’ included) are

{n9 - (azas)(aoas)(a1a4)}®pn1® pﬂz’ M= 1’ 2’ 3. (Clo)

We shall not write these symmetries explicitly in
terms of j’s, p’s, because for this purpose we should
consider separately each one of the nine subregions of
Rao-azva ¥ for the same reason we shall not writte the
corresponding phases, which—at any rate—can be
easily computed by means of 4.2, 4. 7.

Finally, we comment briefly on the case in which r'*?
satisfies (C6), (CT7); this implies the possibilities
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Vo= 7, =+1,0, and ¥, - Vo =2 1,0, so that the operators
(as2,), (a,a;) may become acceptable symmetries and
consequently may modify the picture we have just
drawn,! However, this remark applies only to a very
particular class of 3j-coefficients which lay on the
boundary of R(SU(1, 1)) and involve the lowest represen-
tations; for this reason we feel justified in skipping the
corresponding details.
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Stationary, axisymmetric, asymptotically flat space-times with a black hole surrounded by matter
rings, disks, or shells are considered. A certain set of invariant functions, called local invariants, is
defined which contains full information about the metric and electromagnetic field in a small
electrovacuum neighborhood of the horizon. The local invariants are shown to satisfy an inequality,
which is a generalization of the well-known Kerr-Newman inequality m?>a?+e¢2 and which places
an upper bound on the gravimagnetic, electric, and magnetic field strengths as measured at the
surface of the black hole, independently of whether the fields are produced by the black hole itself

or originate in outside sources.

1. INTRODUCTION

An excellent tool to study the properties of black
holes—at least theoretically—is the simple model of an
equilibrium system consisting of a black hole sur-~
rounded by some matter configuration and otherwise
perfectly isolated from any other influence. The cor-
responding space—time is, therefore, stationary,
axisymmetric, and asymptotically flat. For example,
by using this model, Bardeen, Carter, and Hawking
were able to extract an important equation governing the
energy balance of a black hole.! Among other factors the
striking resemblance of this equation to the second law
of thermodynamics has led to very interesting specula-
tions, %3

On the other hand, the full content of the equilibrium
model does not seem to be exhausted. It still offers
many problems which are of importance for black hole
physics though not directly related to such fascinating
fields as “black hole thermodynamics” or even “black
hole quantum mechanics. ” With this in mind, the model
was more thoroughly studied in,* in particular con-
cerning the structure of the horizon. A promising set of
invariant functions, called “local invariants, ”” from
which the metric and the electromagnetic field in a
small electrovacuum neighbourhood of the horizon can
in principle be reconstructed, has been found. We hope
to gain new insights into black hole physics by studing
properties of these invariants. Some support for these
hopes was made in Ref. 5, where simple and symmetric
relations have been written between the local invariants
and the black hole degrees of freedom (surface area,
angular momentum, and charges).

In the present paper, we develop the idea a step fur-
ther. In Sec. 2, a concise definition of the local in-
variants is given together with a review of their prop-
erties to the extent necessary to understand the new
results. These consist in part of a great number of
small improvements, interrelations and interpretations
and, in part, of an interesting inequality which must be
obeyed by the local invariants. The discussion of some
implications of the inequality closes the section. All
more difficult proofs of the new statements are then
presented in Sec. 3.

We use the dimension and sign conventions following
Newman and Penrose, ® because many spin coefficient
equations are used. Thus, the dielectric constant ¢, of
vacuum, the light velocity ¢ in vacuum, and the gravita-
tion constant G all equal to 1. The signature of the
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space—time metric is - 2 and the definitions of the
curvature and Ricci tensors are

— 1
Vi:]k_ Vi Ri— VxRew
—_ R
Ru—Ruu

the semicolon denoting the space—time covariant
derivative.

2. LOCAL INVARIANTS

In Ref. 7, the structure of all null hypersurfaces
whose generators (= rays) have zero convergence and
shear

p=0=0 (1)

and which possess compact two-dimensional spacelike
sections has been investigated. All Killing horizons
representing black holes® have these properties, but,
e.g., the null hyperplanes in Minkowski space—time
are excluded, because none of their sections is compact.
We call such hypersurfaces “perfect horizons. ”°

Choosing a pseudo-orthonormal tetrad I}, n', m*, m? in
a neighbourhood of a perfect horizon /4 such that I* and
m?! are tangential to // and parallelly propagated along
the rays of //, we can write at 4/

l'.”l-’=m’ul’=0,
1 m!=(a+p)l,

mt I =X1* - (& - By,

(2)

mt m!=pl’+(a-p)m'.

Here, we use the spin coefficients p, 0, o, 8,2, 4 as in-
troduced in Ref. 6 and the relations (1). The following
definition shortens many equations

Q=a+8, TI'=a-3.

The relations (2) imply that the vector a' ;,b’ is tangential
to//, if a' and b* are tangential to //, because all such
vector fields are combinations of just I, m?, and m®.
Thus, (2) defines an intrinsic affine connection on //. In
addition, the well-known degenerate metric on /4 is de-
fined by
o Y (1 1Y — (g ) —
@, mh) =4, 1)) = (m*, m") =0, )

(m*, mH=-1,

Considering // as a three-dimensional manifold with
regular affine connection (2) and degenerate metric (3),
we can answer many questions by working within // and

1554
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forgetting about the outside space—time /). In such a
way, a simple classification of perfect horizons ac-
cording to their symmetry has been worked out in
Ref. 7.

We restrict our attention to axisymmetric perfect
horizons whose spacelike sections have spherical
topology. Then, the set of invariants'®

R, A(y), B(s), E(s), H(J)9 (4a)

can be defined as follows (cf. Ref. 4). Let § be a com-
pact intersection of // with an axisymmetric spacelike
hypersurface T in /. Then, ¢ is topologically a sphere
and the induced metric on § can be written as

ds? = — R¥(d$? + A%(#) do?) (5)

0<y <m,

with unique R >0, and A($)= 0 given up to the trans-
formation

d=T=4 (6)

reversing the poles 4 =0 (north) and ¢ =7 (south). ¢
corresponds to the parameter of the SO(2)-group with
the period 27, and the direction of its increase can be
fixed by a convention—say, from the west to the east.
R can be called the “radius” and A(¢) the “shape func-
tion” of //.

The axisymmetry Killing field £* corresponding to ¢
is, therefore, uniquely determined up to its sign, which
changes under (6). Let I’i, now, denote an arbitrary
vector field tangential to the rays. It is fixed up to a
scaling

ri—qpi ()

where 7 is any function on //. It follows that B(s) defined
by the equation

g U =B, (8)

(proved in Sec. 3) is an invariant with one exception.
Under (6), B transforms as

B(8)—~ - B(1—4).

It is also shown in Sec. 3, that the following equation
holds

I e =Bs)lY, 9

if we restrict I’ to be axially symmetric, and that B=0,
if the outside space—time /is static. Let us call B(g)
“gravimagnetic field. ”

Finally, let #i be the unit future directed normal vec-
tor to Z and nj the unit outwards pointing normal vector
to ¢ tangential to . Then, E(s) is the component of the
electric field and H(y¢) that of the magnetic field in the
direction of #} as measured by an observer with the 4-
velocity n! at any point of § with the coordinate g. E(s)
and H(¢) do not depend on the choice of . We have,
namely,

&, = 5(E - iH), (10)
where

&, =3 F;(I'n' + m*'m)
is a component of the Maxwell spinor & as defined in
Ref. 6. @, is invariant against boosts in the plane de-
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fined by /! and n, rotations in the orthogonal plane as
well as null rotations about ! [because &,=0, see
Ref. 7; and (®,), 1'=0, see Ref. 7]. 1! and n* can be
chosen as

B=(INT) (i +nd), ni=(1/V2)(n}-nd),
which implies (10) and the required invariance. E(y)
and H(¢) transform under (6):

E($)~ E(r-4), H($)~—~H(m-2y).

The functions A(g), B(4), E(¢), and H(g¢) must satisfy
the obvious regularity and smoothness conditions:

8=0: A=0, A’=1, A7A”, A™B regular;
0< g< A>0, (4b)
S=1 A=0, A’ =-1,6A*A", A™'B regular.

The invariants (4) are well defined for all axisym-
metric perfect horizons. Their role is particularly
interesting, if the horizon admits an additional sym-
metry—the collineation group C. This is the case for
any of the following symmetry types: SO(3)XC, SO(3)
XCT, SO(2)XC, SO(2)XCT (Ref. 11)—which were all
called AC-horizons in Ref. 4. For example, the Kerr—
Newman horizon with m? > a® + ¢* belongs to this class,
and the horizon of any generic black hole in equilibrium
with surrounding matter is generally considered as
necessarily being of this AC type.® But it is important
to keep in mind that all results given from now on apply
only to axisymmetric stationary space—times with
bifurcate Killing horizon. Nonaxisymmetric static
space—times with bifurcate horizon or axisymmetric
stationary space—times with horizon of the symmetry
type SO(3)X T, SO(2)XT7" (such as extreme Kerr—
Newman) need essentially diffevent sets of invariants to
describe their structure, * even if the extreme types
seem to be limit cases of the AC types.

Two facts have essentially been shown for the AC
horizons in Ref. 4.

Lemma 1: Let / be an axisymmetric stationary
space—time which contains an AC-horizon /4/* as a
Killing horizon and which satisfies Einstein—Maxwell
electrovacuum equations in a neighbourhood of 4/*. Then,
there is another AC-horizon 4~ in /), intersecting //*in
a compact spacelike surface ¢. If the pole convention
for //* and //~ coincides at §, then the corresponding in-
variants (4) satisfy

R*=R", A%8)=A"(s8), B'($)=-B(),
E*(8)=E"(8), H'(8)=H"(s),

and //*U /" is a bifurcate Killing horizon symmetric
under the (¢, ¢) - transform, 2

Lemma 2: Let the conditions of Lemma 1 be satisfied.
Then, the characteristic initial data for Einstein—
Maxwell electrovacuum equations satisfying the cor-
responding constraints along the two intersecting null
hypersurfaces 4* and //~ (this all abbreviated by CID)
determines uniquely a value of the invariants (4), and
any C3-value of the invariant (4) determines a unique
CID.

From these two Lemmas, and from the well-known
uniqueness theorem for the space—time development of
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a given CID, ** we infer that a value of the set (4) con-
tains complete information about the metric tensor g,,
and the electromagnetic tensor F, in an electrovacuum
neighbourhood of the corresponding horizon. We call,
therefore, the quantities (4) “local invariants” (to
distinguish them from other quantities in black hole
physics such as the electric potential difference between
the black hole surface and infinity, !4 rotation of the
black hole with respect to infinity, ! surface gravity,*
and other possible potential-difference-like properties,
which need not be determined completely by the local
space—time structure at the surface of the hole). We
have shown

Theorem 1: The most general stationary axisymmetric
solution of Einstein—Maxwell electrovacuum equations
that contains a regular bifurcate Killing horizon depends
on arbitrary parameters and functions which can be
chosen as in (4). s

An interesting problem is the following. It is a well-
known fact that there are Killing horizons which cannot
form an absolute event horizon!® in any space—time.
For example, the Killing horizon in the Ehlers—Kundt
C-metric space—time, !” or the inner horizons in the
Kerr—Newman space—times with m? > a? + ¢ (Ref. 18)
(they all violate the condition that there should not be
trapped surfaces outside of them?!®). Can one distinguish
the Killing horizons which may be absolute event hori-
zons from those which may not just by looking at the
values of their local invariants? A partial answer is
given by the following:

Theorem 2: A necessary condition for a Killing
horizon // of AC type to form an absolute event horizon
in an axisymmetric stationary space—time is that the
corresponding local invariants (4) satisfy

T/ B2
/ (f—; +R2E2+R2H2)Ad,9<2. (11)
0
The proof is given in Sec. 3. In order to see implica-
tions of Theorem 2, recall the following properties of
the local invariants (shown essentially in Ref. 5):

Theorem 3: Let the value (4) of the local invariants
correspond to the horizon // of a black hole in an axisym-
metric stationary space—time / which is electrovacuum
in a neighbourhood of /. Let A, J, Q,, and @, be the
net surface area, net angular momentum, net electric,
and magnetic charge of the black hole as defined in
Refs. 1 and 14. Then

A= [ Vg dsde, (12)
1
yz-aém)\/g ds do, (13)
QFZI-— E(s)Vg dsdy, (14)
TJs
1
U= fSHw) Vg dsdo, (15)

where § is any compact spacelike section of // and g is
the determinant of the metric (5) on ¢,

Vg =R2A(s). (16)
Wheeler’s well-known magic formula “black holes
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have no hair” could, now, take on the following form:

Conjecture: Any equilibrium state of the system con-
sisting of a black hole surrounded by matter and charge
configurations is fixed, if one prescribes the values of
A, J, Q,, and @, of the black hole, and specifies the
mass and charge currents of the matter configuration,

In Ref. 5, this conjecture is illustrated and made
plausible in the neighbourhood of the Schwarzschild
solution by considering small axisymmetric, stationary
gravitational and electromagnetic perturbations of the
background containing a thin charged spherical matter
shell (see, e.g., Ref. 19). In particular, the fields of
outside sources can deform the black hole surface and
change R and A(#) (see, also Ref..20), produce a non-
vanishing gravimagnetic field B preserving ¥ =0 (be-
cause the space—~time in which a rotating matter ring is
present cannot be static even if the black hole in the
middle does not rotate), and the radial component of the
electric and the magnetic field originating in the charge
and current of the shell can be nonzero at the horizon
without contributing to the integrals (14) and (15).

Now, we can discuss the meaning of (11). It is clearly
a generalization and sharpening of the well-known in-
equality

m2>a® + e® + K 17

holding for the bifurcate horizon in the Kerr—Newman
space—time with the total mass m, angular momentum
am, electric charge e, and magnetic charge k. The
main similarities and differences between (11) and (17)
can be summarized as follows:

(a) On setting the Kerr—Newman values of the local
invariants into (11), we obtain not only (17), but also
the condition

ry=m+(m? - a® = & = W*)!/2,

Thus, (11) is stronger than (17), excluding the inner
horizon. Indeed, all known Killing horizons which cannot
play the role of absolute event horizon (C-metric hori-
zon, Kerr—Newman inner horizons, Robinson—Bertotti
horizon as well as other CT-horizons*®) are excluded
by (11), as one can immediately verify.

(b) Just as the inequality (17) does, (11) places
limitations on the active degrees of freedom of a black
hole, if its irreducible mass is fixed (angular momentum
and charges are “active, ” because their presence allows
the extraction of energy from the hole). Comparing (11)
with (12)—(16) shows indeed that J, @,, and @, cannot
be arbitrarily large for a hole whose A is kept constant.

(¢) (11) implies limitations on the gravimagnetic field
B, the electric field E and the magnetic field H at the
surface of a black hole independently of what the source
of these fields is. They can originate from the black
hole itself as under (b) [which is the only posibility with
(1], but they can have their source outside the hole
as well. One integrates squares in (11) so that the fields,
which need not contribute to (13), (14), and (15), do
contribute to (11), if they are nonzero.

We can speculate about what these limitations on the
outside fields actually mean:
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(i) Outside fields which were stronger than the allowed
upper bound would destroy the black hole, either by re-
moving horizon (in an analogy to the well-known phe-
nomenon observed in the Kerr family—as a grows over
m, the horizon disappears), or by producing singu-
larities and/or new horizons outside it.

(ii) Qutside fields can never be produced and brought
down to the surface of a black hole so strong and so
directed as to violate (11).

How large is the upper bound? For a spherical “dead”
black hole with radius R, we have A=sing, J=@,=Q,
=0. Apply a “homogeneous” electric field E=E, cosy.
(11) takes the form E,< V3 R™. Using 1 sec™!
=(2/¥3 )X 10 CGS*, we obtain

E,<6Xx10% R [CGS].

Take, for example, R =2 km, corresponding to a solar
mass black hole. The upper bound is, then, 3X10'® CGS.
Thus, if (11) is everything black holes must satisfy,
they are robust rather than fragile.

3. PROOFS

Equations (8) and (9): The left-hand side of Eq.(8) is
a real vector tangential to 4/, hence

£, =BU''+ Cm* + Cm?, (18)

where B is a real and C a complex function on //. Multi-
ply (18) by a covenient function n so that I”i=nl’! is
axially symmetric, i.e.,

Lll”i:l”i;.f EI_ E‘;j " =0.

Hence, the left-hand side of (18) is equal to /"¢ £/, and
this must be a multiple of 7! according to (2). Thus,
Cn =0, implying C=0, because n+#0. As a by-product,
we obtain (9).

It remains to be proved that B depends only on ¢, or
B [I'=0. Observe that (&', £')= - R2A% we can, there-
fore, choose m* such that the relation

E’:‘;_'TRA(m’-ﬁz’)

holds at §; otherwise let I! and m' satisfy (2). Then, it
follows from (8) that

E= \;_TRA(m’ —l)+ Y,

where y is a function on // determined by y ‘=B,
Y] 5 =0. Now, (9) and (2) imply

i _
= — RA(a-a+8-p).
V2
On the other hand, the relevant Newman—Penrose

equations as given in Ref. 6 and adapted to our tetrad
read

a l'=2% 3, (4.2d)
B,il‘=‘1’1y (4. 2e)
0=2%3,, (4. 2a)
0=-¥,+28,3,, (4. 2K)

where we have used the Einstein’s equations in the form
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®,,=29,9,

corresponding to our choice G=c=1. The required
equation B ,I'=0 follows immediately.

B =0 in static space~times. Let the spacetime s out-
side 4/ be static and axisymmetric. Let Z and ¢ be
chosen as in Sec. 2. Through any point p of Z outside ¢,
there passes a totally geodesic axisymmetric spacelike
hypersurface Z, which intersects Z in a topologically
spherical surface §,. Let n} be the unit future oriented
normal vector field to Z, at §,. Clearly

g
5., £'=0,

because &' is tangential to Z,. On the other hand, if p
approaches a point p, at S, Z, converges to // and the
direction of its normal n} must, therefore, approach
that of 2*. Multiplying the vector n{ by an axially
symmetric factor 1, such that

nyn,~1Y,
we have
(ﬂ,";)“ ‘5! = 0’
which implies the statement.

Theorem 2: The strategy of the proof will be to find
outer trapped surfaces (see Ref. 16, p. 319) outside of
/ in the cases when (11) is violated, and then to use
Proposition 9. 2. 8 of Ref. 16 which forbids such a situa-
tion. The conditions under which the proposition holds
are supposed to be satisfied in /. This does not mean
any essential restriction of generality at least as con-
cerns physically interesting space—times.

A is an event horizon, i.e., the outside of // coincides
with its past in /). Let us indicate this by the superscript
“+” at //. As /4" is a Killing horizon of AC type in j,
there must be another perfect horizon in /j, /4, say,
whose properties are described by Lemma 1. 4~ is a
particle horizon, i.e., its future coincides with its out-
side in /). As /" is again of AC type, we can choose the
coordinates a, 4, ¢ and the triad I*, m* along 4" in the
canonical way described by Theorem 5 in Ref. 4. Then,
using Lemma 1, we express all relevant quantities of
A~ by means of the local invariants R, A, B, E, H of
H e.g.,

1=, ma-t 1 (o . 1 8 _, Ei)
= % “Z R \es "Adg YATa)
i 1B 1 1 4
Q—_\/'z"l_{_A’ 1"—————\/2_ RA (19)
114" i1 B
—ipg2, L —— ———,
L=t s T TSR A

@ =0 at the intersection //* N/~ and a <0 outside of //*.

Let us choose an arbitrary axisymmetric compact
spacelike section S of the lower half (o <0) of /-, propa-
gate it by the C-group along //-, and compute the con-
vergence of the outgoing null geodesics orthogonal to
the resulting family of sections. To this end, we
perform the transformation

U=al'!, mi=m'+aQl, (20)
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The new vectors I, m! satisfy
1. mi=ql,

mi mi=(¥,+q ,m - T3+ QRN + I'm|,

(21)
(22)

where T, , ¥, and m' are given by (19). The pair of
vector fields m}, m1 is (1) surface-tangential, because
the imaginary part of the corresponding u [the co-
efficient at l} on the right of (22)] is zero [see Ref. 6
and Eq. (15) of Ref. 7], (2) C-group-propagated, for
(21) implies

[mi,1f]=0

and l{ is a generator of the C-group (cf. Theorem 5 in
Ref. 4), and (3) axisymmetric. Any other axially and
C-symmetric pair m}, m} is of the form (up to a
rotation m% — exp(iy) mj)

Y T
my :!ll_glh

mi=m!+ &l
where ¢ is a complex function on the lower half of /4~
satisfying 0t/da=0t/8¢ =0 everywhere and £=0 at
the pole rays ¢=0, 7. The corresponding u is given by
p=(¥+8 m! - 1Q)+(E ,m! -~ TE) +(Q+£) (R +E).

(23)

m}, m} are surface-tangential, iff

Emi—¢ m!-TE+TE=0,
and this is equivalent to’
=g, m!, (24)

where £ is a veal function on the lower half of £/, which
must satisfy
35 ¢ -
= Ery =0 at all points of the lower half of /7,
(25)
ok

— =0 at the pole rays 4=0, =.

5 (26)

Replacing the first term on the right of (23) by its real

part, substituting for I', Q, ¥,, and m* from (19), (24)
for ¢, and using (25), we find
).

(27)

11 A” Ak
#__2__2,(A +R2E2+R2H2 A +E//+

i is the desired convergence, all possible sections §
being represented by all possible functions ¢ [indeed, u
is a convergence, not an expansion, ® because it is de-
fined as a coefficient at I} in an equation of the type of
(22) and ! is oriented in the past as it follows from

Eq. (20) and the fact that ¢ <0].
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The next step is to choose £ in such a way that the
sum of the first six terms in the parentheses on the
right-hand side of (27) is equal to a constant real number
k. If the conditions (26) and (4b) are to be satisfied, %
is uniquely determined, namely

T 2 ”
kz(j:Ad&)"-[ <% +R2E2+R2H2+—‘%—> Ads.

Using (4b) again we obtain

k=(/, Ads)* [/' (,‘4‘2‘ +R2E2+R2H2))A d,s-z].

Thus, if £<0, (11) follows immediately. Let £=0.

Then u >0 at all points of §, and u remains nonnegative
and regular near // in the future of /-, because § is
compact and weak energy inequality holds. But, then,
we have outer trapped surfaces outside of 4/*U 4~. QED

1J.M. Bardeen, B. Carter, and S. W. Hawking. Commun.
Math. Phys. 31, 161 (1973.
2J.D. Bekenstein, “The Generalized Second Law of Thermo-
dynamics in Black Hole Physics,’” Preprint, Austin, 1973,
3S.W. Hawking, “Black Hole Explosions ?”’ Preprint,
Cambrldge January 1974.
P. Hijicek, Commun. Math, Phys. 34, 53 (1973).

5P. Héijfcek, Commun, Math. Phys. (to be published).

E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
'P. Hijfeek, Commun. Math. Phys. 34, 37 1973).

¥B. Carter, Lecturers at the Summer School, Les Houches,
August 1972.

*Null hypersurfaces exist which are perfect horizons but not
Killing horizons at the same time, so the difference between
the two notions goes beyond the condition of compact sections.

101n facet, the functions of (4a) are not invariant under the pole
exchange (defined later).

HUThe structure and action of the collineation group C, transla-
tion group T, as well as the two-dimensional group CT is
explained in Ref 7.

12Under the (¢,#)-transform, {— —¢ and ¢ — — ¢; therefore,
+

— -

13R.K. Sachs, J. Math. Phys. 3, 908 (1962).

B, Carter, “The Electrical Equilibrium of a Black Hole.”
Preprint, Cambridge, 1972.

15The maximal analytic extension of such a general solution
cannot be always regular outside the horizon: either the
singularity must appear where the outside sources
—material rings, disks, and shells—should be, or, no
asymptotically flat space—time exists at all containing a
part of the analytic extension as a subspace (see Theorem 2).

183, W. Hawking and G. F.R. Ellis, The Large Scale Structure
of Spacetime (Cambridge U. P., Cambridge, 1973).

1TM, Walker, J. Math. Phys. 11, 2280 (1970).

188, Carter, Phys. Rev. 174, 1559 (1968).

19K, Kuchar, Czech. J. Phys. B18, 435 (1968).

20w, Israel, Lett. Nuovo Cim. 8, 267 (1973), G.W. Gibbons,
Commun. Math. Phys. 35, 13 (1974).



Complex structures and representations of the Einstein

equations*

Carl H. Brans'

Joseph Henry Laboratories, Physics Department, Princeton University, Princeton, New Jersey 08540

(Received 23 April 1974)

The space-time model of general relativity is that of a four-dimensional manifold M, with a metric
of Minkowski signature. The space of two-forms on M is endowed with a natural complex structure,
J, generated by the star duality operator. The existence of such a structure is an accidental
characteristic of the dimension four and of the metric signature. The full differential geometric
structure equations are expressed in this two-form language and it is pointed out that the weakened
Einstein empty space equations, i.e., R,, —(1/4)g,,R =0, reduce to the condition that the curvature
form commute with J. This fact, together with the isomorphism of the two-form space with the
Lorentz Lie algebra, [, are then shown to provide the basis for the importance of the various
complex representations of !, such as SO(3,C) and the spinor SL(2,C), in understanding the real
geometry of Einstein spaces. In fact, the complexified Einstein structure equations naturally divide
into two sets, each the complex conjugate of the other, each involving only one-half of the basis.

INTRODUCTION

The study of Einstein’s general relativistic field equa-
tions has had a profound impact on differential geometry.
These equations have been expressed in many different
forms, each showing a different facet of Einstein space -
time.! In this paper we will concentrate on the represen-
tations of the Einstein equations generated by represen-
tations of the Lorentz Lie algebra, I,, and try to under-
stand why the complex representations of 7,, such as
50(3,C),? and the spinor one, SL(2,C),® provide such
natural and effective framework for the study of the veal
differential geometry of Einstein spaces. Our approach
will be to start with an expression of the Einstein equa-
tions in terms of conditions on the curvature forms.
Next, the curvature forms will be related to linear maps
of the space of two-forms, F3, at each point into itself.
For the special case of four-dimensional manifolds with
indefinite metrics F3 is endowed with another linear map
onto itself, J, which has the characteristics of what
mathematicians call a “complex structure. ” The exis-
tence of J then gives rise to a natural isomorphism of
the real six-dimensional Ff, with the complex three-~
dimensional vector space. We then note that the Einstein
equations can be expressed simply by saying that the
curvature commutes with J, Thus, in explicit complex
representations the equations naturally split into two
sets, each of which involves only one-half of the basis
and is the complex conjugate of the other, so that the
complexification has essentially halved the number of
equaltions to be solved.

In order to carry out this program, we must introduce
a formalism in which the basis for vectors, forms, and
other geometric quantities can be freely chosen at each
point to conform to the structure of the metric, curva-
ture, etc. The language of modern differential geometry,
especially exterior differential forms, is well adapted
for this program. Those readers familiar with the use
of bundle theory will find it a natural framework for the
expression of these ideas. However, for simplicity of
exposition, we will not explicitly use bundle techniques
in this paper.

FORMS, VECTORS, AND GEOMETRY
This section contains a brief review of the formalism
to be used in this paper. This approach involves the use
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of differential forms, and, in particular, takes advan-
tage of the availability of arbitrary bases at each point
to describe the forms, or, equivalently the dual space
of tangent vectors. These arbitrary bases are some-
times referred to as “tetrads’” in the physics literature.
For background information on the use of differential
forms presented intuitively see Misner, Thorne and
Wheeler.® For a2 more complete and mathematical treat-
ment of these and other tools for differential geometry,
including complex structures, see Kobayashi and
Nomizu. * " ’

For our purposes, space~—time can be represented as
a four-dimensional, orientable, differentiable manifold
M. At each point p€ M let T, be the space of tangent vec-
tors at p. An element of T, can be defined intrinsically
as a “differentiation operator”, or more concretely re-
presented in terms of components, +* (a=0,1,2, 3), with
respect to some local coordinates, x¢, near p.® Thus, if
vET,, we will write

v=173/0x%, (1)

where the symbols 3/3x° stand for differentiation along
the corresponding coordinate lines. Equation (1) shows
clearly the usual contravariant transformation proper-
ties of the list of components, v*, under a coordinate
transformation. The vector space dual to T,, i.e., the
space of all linear functions on 7, is denoted by T%. An
element of T} will be represented by a Greek letter, say
p, and will be called a differential form of degree one,
or simply a one-form. Let the symbols dx° be used to
represent the dual basis to 3/38x%, so that as linear func-
tions on T, the dx® satisfy

dx*(3/9x%) =8, (2)

An element of T} can be written in terms of its compo-~
nents, p,, with respect to dx® as

p=p,dx°,
showing the covariant transformation law for p,.

Tensors are then defined as usual as linear combina-
tions of ordered products of vectors and forms. One
particularly important class of tensors for our purposes
will be totally antisymmetirc tensors built from one-
forms. Those of degree 7 are called r-forms and a spe~
cial symbol,/\, is used to represent the antisymmetric

Copyright © 1974 American Institute of Physics 1559
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product of forms. Thus, an r-form w can be written with
respect to the coordinates x* as

=1/, ..., dxt/\ s \dx®r, (3)

where the components w, veq, AFE totally antisymmetric
and the normalization by 7! is standard convention. We
will denote the space of »-forms at p by F7, so that
T*=F*

b p*

The symbol “d” used in the initial coordinate represen-
tation of one-forms can be used in an extended sense as
an operator taking »-forms into (» + 1)-forms defined
directly by

dw:[l/(r+1)!]w[a1,_, dxtretl Adxot e\ dxor,  (4)

where the comma denotes ordinary differentiation and
the brackets indicate antisymmetrization of enclosed
indices.

Qy,ap+l]

Now consider the notion of generalized bases for T,
that is, bases which need not correspond to differentia-
tion along coordinates in any neighborhood. Thus if %,
are four linearly independent vectors at p, then any vec-
tor v can be written

v=1"u, (5)

in terms of components v?. Let us now introduce the
notation of using boldface letters to represent bases, so
that u stands for the matrix of four independent vectors,
{u,}. Let us call such a u a “vector frame” and denote
the set of all vector frames at p by B,. " Similarly, let
B} be the dual space of “form frames” so that if p< B},
then p stands for a matrix of four independent one-forms,
{p°}. The duality relationship between T, and T* pro-
vides a natural, unique, isomorphism between B, and

B} defined by p «»u iff

pa(ub) = Gab’ (6)
or, in more compact notation,
p(u)=1. )

As noted above, the introduction of arbitrary frames for
vectors includes of necessity a wider class of frames
than those which can be represented by sets of vectors
each of which is differentiation along some coordinate
line. It can be shown that a necessary and sufficient con-
dition for the existence of a local coordinate system

such that

u,=0/0x°, 8
or, equivalently, for the dual basis {p?},

pe=dx?, (9)
is that

dp=0. (10)

A frame for which (10) is satisfied is sometimes said to
be holonomic. In general, however, there will be a non-
zero matrix 4%, =-A°®  associated with each frame p,
such that

dpr = 342, P\ g, (11)

The family of frames, B}, is tied together by the ac-
tion of the general linear group, GL(4,R). Thus if pe B}

and g€ GL(4,R), with g represented by the matrix {g,},
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then g can be regarded as acting on B} taking p into
p’'=gp, :

p'*=g%p". (12)

The dual, contragradient, action of GL(4, R) on B, is
obviously defined by means of the relationship (6). Thus,
if u is dual to p, then u’=ug™ will be dual to p’, where

ul =u,(g™e,. (13)
A metric on M can be defined in terms of an inner
product on each T,, denoted by (, ). This corresponds

to a nonsingular, symmetric matrix v,, for each frame
u€ B, such that

| (14)
For physical manifolds each v,, is required to be of sig-
nature (-, +, +, +). Equivalently, using the duality iso-
morphism we can write the metric in terms of an in-
variant expression, ds?,

yab(u) = (ua, ub).

ds®=7v,,(p)o"p. (15)

The significance of the product of forms on the right
side of (15) can be seen by relating the p? to the dx?,

so that (15) becomes a bilinear quadratic expression in
the dx®, reducing to the definition of metric as a rule for
deriving infinitesimal distance ds from the dx* regarded
as coordinate differentials.

The introduction of a metric permits a specialization
of the frames to those for which the metric matrix as-
sumes some standard form, for example, 1,,=diag(-1,
+1,+1,+1), Let BS and B)* be those subsets of B, and
B respectively for which the metric matrix {v,,} as-
sumes the value {n,,}. These will be called the families
of Lorentz frames. Further, for simplicity, we will as-
sume that B) and Bg* have been restricted by the prefer-
red orientation on M. The reduction of B} to B)* thus
means that the allowed group of transformations has
been reduced from GL(4, R) to the proper Lorentz group,
L,=S0(3, 1). The value of this approach lies in the fact
that the metric assumes a constant standard value at
each point and the group connecting all admissible
frames has been reduced to the well-studied L,. The
price paid, of course, is that the frames will in general
no longer be holonomic, that is, composed simply of co-
ordinate differentials,

Another approach to the geometry of M is by means of
the definition of covariant differentiation and the associ-
ated connection forms, By using appropriate linearity
properties for derivatives, the value of the covariant de-
rivative V_w of any vector w along a given vector v can
be obtained from the action of V, on the members of a
basis, which in turn can be written

V4 == b, (v)u,, (16)
or

(17
The matrix w(v) depends linearly on the vector v and so

defines a matrix of one-forms, w, called the connection
forms.

vu=-w(v)-u.

The relationship between covariant differentiation and
the metric is established by requiring that the parallel
displacement naturally defined by the covariant deriva-
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tive preserve the metric inner product. Regarding

{- w®,(v)u,} as the infinitesimal displacement of the frame

{ua}, the metric condition can be expressed by requiring

that for any v € T,, the matrix w®,(v) be an “infinitesi-

mal” Lorentz transformation, or, more accurately, that

it belong to the Lie algebra, l,, of L,. Thus, the metric

condition for the connection is
w:T,— Lo, (18)

or,

(19)

Finally, we add the usual condition that the connection
be torsion free so that for the basis p< Bg* dual to u,

b | J—
nabw c+ncbw u—o‘

dpu — wab/\ pb’ (20)
or simply
dp=w/\p. (21)

Tt should be noted that (20) and (19), or, equivalently,
(21) and (18), serve to uniquely define the connection
forms w in terms of the basis p and the standard metric
n.

The curvature tensor can now be defined by

do®, +w* A w, =9, (22)

or in terms of the full list of Riemann curvature com-

ponents R?, .

Q= %Rabcd peApt. (23)

Again, we can make use of the matrix notation to write
(22) simply as

dw + o\ w=., (24)

and express a result of the metric condition in terms of
an equation that will be of importance later.

Q: T~ ], (25)

’
where T[”, is the linear space formed from antisym-
metric pairs of vectors. The fact that at each point the
metric provides a natural isomorphism between T'2! »
and /, means that the curvature tensor translates to an
endomovphism of l, with itself, In the same way, the
metric induces an isomorphism of F?, with /,.® The ap-
proach of this paper will be to emphasize this central
role of /,, and thus its representations, in studying gen-
eral relativity.

In summary, the differential geometric structure of
M can be expressed by a choice of a frame of forms p.
The metric is then obtained from this choice according
to (15) while the connection and curvature properties
are described by (21), (18), and (24). The geometry it-
self (in the sense of the metric) is unchanged by Lorentz
transformation on p, so in this sense the appropriate
description of the geometry is carried by the full set of

Lorentz frames, Bg*, at each point, each acted on tran-
sitively by L,.

STRUCTURE EQUATIONS FOR F?,

In this section we will translate the above geometirc
formalism into one based on sz. First, 1 » must estab-
lish a relationship between B} and the bases for F?, de-
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noted by , With ¢ B , representing a matrix of six lin-
early independent two-forms, {¢i}, i=1,..., 6.
Clearly,

ot=1p 0°A p2, (26)

for some quantities f!,, which, for the moment, are to
be regarded as fixed. Thus different ¢’s are generated
by different p’s. How then is the choice of ¢ related to
the choice of p and thus the metric? Assume that the
metric has been defined by choosing the p used in (26)
as a Lorentz frame, so that ds? is given by (15) and

p € By* by definition. Consider the 6 X6 symmetric ma-
trix At/ defined by

BINGI =AML, (27)
where
I=p°A p*A p2 A po. (28)

From the linear independence of the ¢, it follows that
A% is nonsingular, with inverse denoted as usual by A, .
This matrix plays the role of a metric on F?,.

We can now state the important converse to this rela-
tionship: Any six independent two-forms satisfying (27)
define uniquely (up to inversions, with which we are not
here concerned) a basis p for which (28) is true. In
order to prove this statement, it is sufficient to consi-
der one particular choice for f*, and associated ¢*
since, because of the assumed completeness of the ¢,
any other set of ¢! can be obtained as linear combina-
tions of this particular one, The entire proof can then be
translated into the other basis by a linear transforma-
tion. Let us choose fi , so that

¢i=p°A\ o},

i<3,

(29)
and
¢“3:%€ijkpj/\pk’ i$3, (30)

where ¢, is the three-dimensional alternating symbol.
The conditions (27) become in this case

o3 N\pi=0641, i<3, (31)

and

SN pI=043 >3, (32)

Assume now that some other linearly independent set is
given, say ¢'i, satisfying (31) and (32). More precisely,
with respect to some bases, say p’, the ¢’} can be
expressed

ori=3g' 07N p",
and (31) and (32) are satisfied with I replaced by I’
=p”A pA p?A p’*. We must now show that p’ can be

adjusted so that gi , =f',,. To begin, consider the set of
equations

¢/1/\ ¢11:¢:4/\¢)r4:0,

(33)

(34)
and
¢ 11/\ ¢ 4 =I.

From (34) it follows that ¢'* and ¢/ are each simple
two-forms, i.e., hook products of pairs of one-forms,
while (35) implies that this set of four one-forms is in-
dependent, and thus, by redefining the basis p’, we can
set

(85)
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(brl:plo/\pll
and

¢t=p”Np~. (37)

The proof then proceeds by filling out the remaining ¢ ¢
similarly, with the only ambiguities arising being dealt
with by reordering the index i.

(36)

Further, we note that the action of the Lorentz group
L, on the basis p gives rise to a corresponding group
action on the basis ¢ which preserves the “metric” A/
as defined by (27). This is, of course, equivalent to the
antisymmetric two-tensor representation of L,. In a
manner analogous to the restriction of the one-form
bases B to B3* we can also define A3 as the subset of
B, generated by the group preserving At/, denoted by

Lo

For a fixed representation f* ,, we can summarize
these results: A melvic can be specified in terms of the
two-form F?, structure by the conditions (27) corre-
sponding to the choice of Loveniz basis p defined by (26).
The equivalence class B°, of such bases producing this
metric, A, in (27), corresponds to BS* for the one-
forms,

We now proceed to construct the structure equations

' with respect to F? ,» defining the analogs of the connec-
tion and curvature forms along the way. The metric in-
duced isomorphism between [, and F?, discussed in Foot-
note 8 will play an important role. First, we note that,
by lowering an index on the matrix of connection forms
{w?,}, we obtain a matrix of forms {I'¥}, representable
by the f*,,. Thus there is a one-to-one relationship be-
tween possible matrices of connection forms and ma-
trices {T'{} of one~forms defined by

W =T 'y (FiEAijrj)' (38)
In fact, we can use (27) to explicitly evaluate the I'
Ti=- %Gab‘:dwabficd’ (39)

where now €2%¢? ig the totally antisymmetric symbol with
€%123 — .1, On the other hand, by using the metric to
raise the first index of the components of elements of
F?,, we can introduce the Lie algebra bracket operation
on F?

U s =FF oy = e (40)
Because of the assumed completeness of the set f! ,, we
can find a set of constants (we are always assuming the

S}, to be fixed and constant from point to point in M)
8%/, such that

[fi’ fj]=suhfk'
The S/, will of course be recognized as the structure
constants of /, with respect to the basis defined by the

fiab‘

With this background it is now a straightforward mat-
ter to write the differential structure equations, Using
(28), (20), (38), and (41), we get

(41)

dap =Ir, ¢] (42)
or, in terms of components,
dot =S%,T p*. (43)
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Finally, the curvature equations (22) become

dr, +3S* T AT, =R, ¢4, (44)

in which the cufvature is represented by the 6 X6 matrix

Ry

Thus, we have a complete F° ZP representation of the
metvric, connection and curvature, described by (27),
(43), and (44). Once a set of six independent two-forms
¢t is given satisfying (27) for the At/ defined by the f,,
we can decompose them wiquely into a basis p satisfy-
ing (26). The differentials of the ¢* then give the connec-
tion forms T by way of (43), in which the S*, are also
determined by the f' , as in (41). As they stand, these
equations do not appear to offer any advantage over the
one -form equations (15), (20), (19), and (22). However,
in the next section, we will find that the introduction of
the complex structure J on sz, in terms of the star
duality operator which can be done only for Minkowski
signatuve metrices and dimension four, enables us to
re-express these equations in such a way as to produce
a significant simplification of general relativistic field
equations, especially the vacuum Einstein equations, in
various representations.

COMPLEX STRUCTURES

The important role of F? »» Or equivalently its isomor-
phic image I,, in the geometric structure equations
given above leads us to investigate the structure of these
spaces more closely. We will find a natural negative-
square endomorphism on these spaces, J, which satis-
fies the condition of being a complex structure in the
mathematical sense. Using this, we will study the form
of the complexifications of F?, and I,, leading naturally
to complex representations of the geometry associated
with representations of the Lorentz Lie algebra. The
most important of these representations correspond to
the group SO(3, C), SL(2, C), the latter being the spinor
representation.

Now, let us define an operator J on F"p in terms of
the Minkowski-signature metric and the alternating,

totally antisymmetric symbol, ¢, , for which

€opps= =" =+1. (45)
Let ¥ be a two-form, -having components ¥ , with re-
spect to the basis p for which the metric is 7,,. Define
J¥

JU == Jyebyedy e oA pm. (46)

Because we are dealing with a space—time of dimension
four, J is a linear map of F?, onto itself, and, because
of the indefinite signature of the metric,

J2=-1, (47

where 1 is the identity map on F?,, Such a linear map
of a vector space onto itself is called a “complex struc=-
ture.” It will also be recognized, perhaps in more fa-
miliar form, as the “star operator,” generally repre-
sented by the symbol *, Here we have chosen the sym-
bol J for two reasons: first, to emphasize its role in
the complexification of the geometric structures in
which it will be replaced by the usual imaginary number
i=V~T, and, second, to stimulate investigation into the
possibilities of regarding J as a variable operator in
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terms of which general relativistic geometries can be
described. This second approach will be developed in
other papers.

Now let us recall that the curvature can also be ex-
pressed in this formalism as an operator of F?, onto
itself as described in Eq. (44). Thus define the operator
R on FZ?, in terms of the 6X6 matrixR,,, and the two-
form metric A,

R(p7)= AR 0%,

Now decompose the curvature operator R with respect
to the complex structure J,

R=P+Q,

(48)

(49)

where P and Q are the parts of R that commute and anti-
commute with J respectively. Therefore,

P=(R -JRJ)/2, (50)
Q=(R+JRJ)/2. (51)

It is now a straightforward algebraic matter to show that
this decomposition corresponds to the more familiar de-
composition of the components of the Riemamn curvature
tensor R, , into Weyl conformal part, traceless Ricci
part, and curvature scalar part. In fact, by using

Ri)'fiabfjcdzRabcd’ (52)

and the definition of J in (46), it follows that P depends
on the Weyl plus curvature scalar part and Q on the
traceless Ricci part, R, - 7,,R. Thus the weakend
Einstein equations can be expressed by saying that the
curvature opevator on F 21, commutes with the complex
structure J. See Chap. 13 of Misner, Thorne, and
Wheelers for details of these calculations in terms of

one-form components, R, ..

In order to take advantage of this result, we note that
the condition (47) satisfied by J leads naturally to a com-
plexification of F?, in which the F?, regarded as a real
vector space of six dimensions can be replaced by a
complex vector space of three dimensions with the imag-
inary scalar multiplication being associated with J,
Thus, suppose that ¢ is some basis for sz, and let cap-
ital Latin letters, A, B, C,..., assume only the values
1, 2, 3. Consider then the three complex dimensional
vector space, F2°p spamned by the three complex two-
forms o4,

A=t +iJoh, ¥=-1, (53)

Thus, F2CP is the set of complex two-forms o that can
be written

(54)

where the z, are three complex numbers. Similarly, the
conjugate space, FZCP is defined in terms of the basis

o=2,0%,

4 =pA - T4, (55)

It is easy to see that there is a one-to-one relationship
between F?, and F?°, defined as follows. If ¥ € F?,, let
the components of ¥ with respect to the basis (¢4, Jp4)
be the six real numbers (x,, y,) so that ¥ can be unique-
ly written

U=y, +9,J04, (56)
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Defining the three complex numbers z, by

2, =%, =iy, (57)
we can then define the image of ¥ in F*, as ¥°,

Ye=z,04. (58)
Conversely, the real ¥ can be obtained from ¥¢ by

T =(¥°+¥°)/2=(z,0% +2,04)/2. (59)

This relationship is clearly one-to-one and its consis-
tency depends on the condition (47). It is this reduction
of the dimension of the vector space from six to three
by complexification here, and in the structure equations
below, that makes this approach helpful.

Next, we note that J commutes with the A operator,
(J)ANT =3 A\JY, (60)
and
[TONETY)=-3AV, (61)

Thus, regarding as an inner product on sz, with met-
ric A/ we see that this six-dimensional array com-
mutes with J and respects the division between o* and
0. That is,

ot Ao® =48], (62)
A A\5E =0, (63)
o4 \ o8 =A4B], (64)

Note that (64) is merely the complex conjugate of (62) so
that when working over the complex field, it is neces-
sary only to satisfy (62) and (63).

Similarly, it is easy to see that J commutes with the
Lie bracket operation for two-forms. Thus, from the
definitions (40) and (46) it follows directly that for any
two-forms & and ¥

(38, v]=-[s, J¥], (65)
so that
38, Ju]=[s, ¥]. (66)

When these results are applied to the basis o4 defined
in (53) and (55), it follows immediately that the real
structure constants S!/, for which the indices run from
one to six can be replaced by complex $42 _ with indices
running only from one to three,

[o#, o8] =548 o°, (67)
[o4, 38]=0, (68)
[0, 08]=548 5°, (69)

Finally, the differential structure equations (43) and
(44) become

do* =SABCTB A Oc,
dl¢ + %SABCPA,\ T'p =PCAOA + QCAE’A-

The matrices P and Q correspond to those defined in
(50) and (51) so that the Einstein equations correspond
to the condition

(70)
(71)

Q,u5=0, (72)

Further, P must be symmetric and, for the stronger
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Einstein condition, R =0, traceless. Clearly then, the
Einstein equations have a formal three-dimensional
structure over the complex field. Of course, we must
recall that the complex basis 0%, while containing only
three elements, consists of two-forms over a four-
dimensional M.®° This apparent three-dimensional struc-
ture will be analyzed in more detail in the following
" section,

REPRESENTATIONS OF /, AND THE EINSTEIN
EQUATIONS

Now consider how various representations of the
Einstein equations correspond to representations of [, in
the two-form structure equations.

First, we note that we can freely choose the metric
A, to be any nonsingular complex symmetric matrix
by appropriate choice of basis, (0%, ). In particular,
we can set

By p=10,p, (73)
corresponding to
o4 =p°A pA +ipP A\ p€ [A, B, C=cyclic (1,2,3)]. (74)

Thus, when the basis o4 is changed by an element of L,,
the o4 are transformed in such a way as to leave the in-
ner product form 6,, unchanged. Such a transformation
belongs, of course,to the complex group SO(3,C) and
this procedure can be described as the SO(3, C) repre-
sentation of .

For this basis, the structure constants have the form
SAB = jeABC ('75)

since lowering and raising indices is accomplished by
multiplying by ¢ or -, respectively, for the metric in
(73). The Einstein structure equations become

do* =ieABCT A oF, (786)
dT o+ (i/2)eAB°T AT =P, 0%, (1)

The essential three-dimensional form of these equations
can be more clearly displayed by using a three-vector
notation, o=(¢%), T'=(I'*), P=(P4}), with the special
symbol ® representing the combination of hook form-
product with three~-dimensional vector “cross product.”
Thus (76) and (77) become?

do=-T® o, (78)
AT -T® T =iP - 0. (79)

This approach is obviously well suited for the Petrov
analysis of the algebraic structure of the Riemann ten~
sors of Einstein spaces. In fact, the basis (¢*) defining
the geometry is arbitary up to a complex orthogonal
transformation. Thus, the matrix P which carries the
content of the curvature tensor can be freely
transformed

P— P’ =§'PS, SeS0(3,0). (80)

Petrov? found that most general P could be transformed
as in (80) to one of essentially three different canonical
forms, %00

typeI: P= \0B0 |
00y (81)
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a0 0
typeIl: P=f{ 08~-i1l , (82)
01 B+i
a 10
typeIll: P=|1ai |, (83)
0i o

where @, B, v are arbitrary complex numbers, which
can vary from point to point, of course. Further, the
stronger Einstein condition, R=0, requires a +B+yv=0
for type I, @ +2B8=0 for type II, and a =0 for type III.

Hence, one natural approach is to choose for P one of
these types, insert it into (78) and (79), thus reducing
the freedom of choice for the basis o#, at least in the
nondegenerate cases. This technique has been used suc-
cessfully to reduce the type III problem to one equation
for one-function, for which a one-function family of
solutions has been obtained. !° Similar results can be
obtained for the type N case (type II with @ =8=0).

However, the most intriguing possibility seems to lie
in the general type I case in which no two of the a, 8, ¥
are equal., Further, adding the a + 8 +7v =0 condition re-
duces the triple (@, B, ¥) to two independent complex
functions, precisely the number (if they are functionally
independent) to uniquely determine a canonical set of
coordinates for the base manifold M, as well as a fully
determined basis for two-forms and thus one-forms. In
other words, the “most general” Petrov case is the one
in which the coordinate and frame degeneracy vanishes,
suggesting that it might also be the one for which solu-
tions could be easily obtained. Alternatively, it might
be profitable to postpone the a + 8+ 7y =0 condition and
regard the a, B, 7 as a set of complex three-dimen-
sional coordinates, solve the resulting three-dimen-
sional structure equations and then search for ways to
map the forms o* into two-forms over a four -manifold,
satisfying also (62) and (63).

A closely related approach is based on the choice

010

100 | (84)
001

Ay p=i

The structure equations can still be written as (78) and
(79) but where the ® symbol means

(@ v =ulv® - ule?, (85)
(u® v)2 =uv? —u?v®, (86)
(u® v) =ul = ule?, (87)

for a pair of complex three-vectors u and v. The alge-
braic conditions (62) and (63) for the ¢4 imply

P Aot =?A =0, (88)
*tAP=0*A =il (89)

From these it follows that the 0* can be decomposed in
terms of two real, null, one-forms k, A and a complex-
complex conjugate pair u, u,
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ot =vZTx Ay, (90)
o =va NG, (91)
=ik AN+ pA ). (92)
The metric is
ds? =2k +2uL, (93)

This approach is well suited for the study of gravita-
tional radiation problems. In fact, the null vector dual
to x can be chosen to be a “principal null direction, !
tangent to null geodesics representing gravitational rays
by requiring P!, =0. This last condition can be met for
any but the algebraically nondegenerate type I case.

Let us now fix A, , say to have the value given in (73),
and consider the possibility of representing two-form
geometric quantities in terms of various representations
of I,. Such an n-dimensional representation can be spe-
cified in terms of matrices 7%, a, B=1,..., n, whose
matrix commutators have the S48, for structure con-
stants. In this case,

TAauTBuB_ TBuuTAuazieABCTCaB_ (94)

We can now use these matrices to represent the basis
o%. First, let 7, denote a matrix of two-forms lying in
the linear matrix space spanned by the T4, that is,

T g= ¢A TA aB (95)

for some (complex) two-forms ¢,. It is now easy to see
that a necessary and sufficient condition that the matrix
T%, provide a basis satisfying (62), (63), and (73) is
that

e A T8 =120 I, (96)

TaB/\ ?uv=0’ (97)
where

1o, =0, T4 TR . (98)

The quantities ¢*;*, will be recognized as the components
in this representation of the metric associated with the
Killing inner product defined on semisimple Lie alge-
bras.!? If we further restrict ourselves to faithful re-
presentations, it is clear then that (96), (97), and (98)
are the conditions that 7%, be decomposable according to
(95) into a basis for F?, satisfying (62), (63), and (73).

The differential structure equations are now easy to
write,

dr=-~[r, 7], (99)

which defines the connection forms I' ={I'*} in this re-
presentation and '

dar -ir,rl=ip.7, (100)

which defines the Einstein curvature forms, P={P* Fote
Again the satisfaction of the weakened Einstein equations
is equivalent to the absence of the complex conjugate
terms 7 on the right-hand side of (100).

For example, consider the SO(3, C) representation.
In this formalism, we would represent the basis by
3 X3 antisymmetric matrices of complex two-forms 7.
Because of the three-dimensional characteristic and the
antisymmetry, however, we can go over to a three-vec-
tor formalism, o*=1e45¢78 . This, of course, leads
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directly to (78) and (79) above.

The basic representation of [, is, of course, the spin-
or one, Here n=2 and the bases are represented in
terms of 2 X2 matrices 7%; of complex two-forms belong-
ing to the Lie algebra of SL(2, C) and hence required to
be traceless,

T =0, (101)

This implies that there are only three independent com-
ponents, say T, 7%, 7%, with 7%, = -7}, By using Pauli
matrices for the TA*,, -it is seen that the conditions (96),
(97), and (98) reduce to

™A =(=i/8), (102)
T, 72 =(=i/2)I, (103)

and all other products zero. Thus, these conditions are
equivalent to (88) and (89), so that, again, the basis
matrix 7%; can be decomposed into the radiation adapted
one-form frame (x, X, i, i), as in (90), (91), and (92).

The differential structure equations are given by (99)
and (100) in which the curvature is represented by the
matrix P*# . If we add the R=0 condition, the full set
of algebraic conditions on this spinor representation of
the Einstein curvature tensor becomes

paauv =pr

v 8

Pt =P =0

(104)
(105)

By noting that the indices assume only the values 1, 2,

it is easy to see that there are only five independent
components for a P*;*, satisfying (104) and (105),
Penrose® has fully analyzed the properties of such a
matrix in a manner analogous to that of Petrov for the
S0(3, C) representation, resulting in a “principal spinor”
decomposition.

Finally, it should be noted that this formalism is well
adapted to an extension in which the F2,, or [,, structure
at each point is regarded as the geometric part of a
larger structure. For example, [, can be imbedded in
the conformal Lie algebra referring perhaps to electro-
magnetic or quantum mechanical symmetries, If the
complex structure can similarly be imbedded, the purely
differential structure equations, (70) and (71), can be
naturally extended to a set involving a mixing of the geo-
metry and the other symmetries. This problem will be
considered in another paper.
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unitary representations of pseudo-orthogonal groups*
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A unitary tensor product representation of the group S O,(1,n), n =2,3,4, does not contain the
trivial representation as a discrete direct summand unless each of the factors does.

INTRODUCTION

The following question arose in the course of an in-
vestigation® in quantum field theory: Can a tensor pro-
duct representation® D,® D,® - ® D,, where each D, is
a (continuous) unitary representation of the group
S0,(1,n), contain a vector which is invariant under the
action of all the elements of the group? In other words,
can the decomposition of such a representation into ir-
reducible representations include the trivial (identity)
representation? The answer is negative, at least for
n=2,3, or 4, unless each of the factor representations
contains such an invariant vector (in which case the
product of those vectors is invariant under the product
representation).

This theorem can be applied to prove uniqueness of the
vacuum? in a quantum field theory invariant under the
de Sitter group SO.(1, 4), or in an analogous model of
space—time dimension 2, invariant under SO.(1, 2).
There* one is led to construct a Fock space

=P
7=2 M
)
Ho=C, =D, H,=D®D, ",

where D is a Hilbert space supporting an irreducible
unitary representation (or ray representation) of
S0,(1,n). D is interpreted as the space of possible
quantum states of a single particle. Since each //, is in-
variant under the natural action of SO, (1, %), the theorem
implies that the only invariant vectors in 7 are those in
the one-dimensional subspace //,, representing the state
with no particles present. )

The theorem will be proved first for SO (1, 2) and then
extended to the two next higher dimensions.

TWO IRREDUCIBLE REPRESENTATIONS OF
S0, (1,2)

The irreducible unitary representations of SO,(1, 2)
can be described in infinitesimal terms as follows. 5 Let
Jdys Jy, J, be the standard choice of basis for the Lie
algebra of the group, and @ =J,%>+J,% - J,2 be the
Casimir invariant operator. Each representation
possesses a basis consisting of vectors |g;p), where

Rla:p=dla;p), Jola;py=prla;p,
(J,£i0,) g0y =[g+pp+1)]/2|q; p£1).

The fixed number g parametrizes the representation (but
does not determine it uniquely®), and the index p labels
the basis vectors within the representation. Besides the
trivial representation (g=0, p=0) there are representa-
tions corresponding to all positive values of g (the con-
tinuous series) and to certain other values (the discrete
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series). In each nontrivial representation the range of

p is a discrete set of points which extends by unit steps
to infinity in at least one direction. These results are
derived by observing that in a unitary representation the
factors [g + p(p + 1)]'/2 must be real numbers, and that
the sequence of p’ s in a representation can terminate
only when one of these factors vanishes.

Theovem 1: Let D, and D, be any two irreducible
unitary representations of SO(1, 2), not both trivial.
Then D, ® D, does not contain the trivial representation
as a discrete direct summand.

Proof: The argument is analogous to Pukanszky’s
determination of the discrete representations which ap-
pear in the tensor product of two continuous representa-
tions. ® Let the values of the Casimir operator for D,
and D, be ¢, and ¢,, respectively. We must show that
no vector

Y= a,, lg,;00® 4,30, (infinite sum)
P12 172

in the tensor product space is annihilated by all the
basis elements of the Lie algebra of the tensor product
representation. (The latter have the form

J=Jdi @1+ 1g JiP2’

in an obvious notation. ) The condition J,¥ =0 implies
that ¥ is of the form

\If=pE a,|q, ;0@ |a,; ~ ).

Requiring that (J, +iJ,)¥ =0 leads (after taking a scalar
product with each of the basis vectors) to the equations

afa, + b+ D)2 +a,,lq, +pp+ D2 =0,
a,(q, +p(p+ D2+ a,, (g, +p(p+ 1)]/2=0.

These are consistent only if ¢, =¢,, and one then has

a,., = — a, for all p in the range of p in the representation
D,. [One must check points where the coefficient

g, + p(p + 1) vanishes; but these simply mark the bound-
ary of the representation D,. ] It follows that non-
vanishing a’s satisfying a,., == a, must extend to infinity
in at least one direction. Consequently, the sequence
{a,,} is not square-summable; no normalizable invariant
vector can exist.

Remark: The presence of an irreducible representa-
tion D in a tensor product D, ® D, is often detected by
coupling the basis vectors of D,, D,, and D7 to form
an invariant object,® where DT is the representation
contragredient to D. In the case of SO(1, 2) this tech-
nique has been used to calculate Clebsch—Gordan co-
efficients and matrix elements of tensorial operators. °
The principle involved is demonstrated in the proof of
Theorem 1, where one succeeded in constructing an in-
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variant from (and only from) two irreducible representa-
tions with the same value of ¢ and values of p of opposite
signs; such representations are mutually contra-
gredient. For the infinite-dimensional representations
of noncompact groups the invariant is not normalizable,
in general, and hence does not constitute a trivial sub-
representation of D,® D,® D7,

MANY REDUCIBLE REPRESENTATIONS OF
S0, (1,2)

Theorem 2: Let D, (j=1,...,1) be unitary representa-
tions of SO,(1, 2), not all of which contain the trivial
representation discretely. Then D,® D,®---® D, does
not contain the trivial representation discretely.

Pyoof: Any representation, for instance D,, is a direct
integral'? of irreducible representations:

D= f@ dv(s)[F - D(s)].

Here D(s) ranges over the inequivalent irreducible rep-
resentations, which are labeled by a parameter s; v is
a measure on the space of allowed values of s; jg“’ is the
multiplieity (which may be countable infinity) with which
D(s) occurs in D;; and [j - D] denotes the direct sum of j
copies of the representation D:

[j+D]=D®--®D (jterms).

We use such notations as D, and [j- D] to stand both for
a representation in the abstract sense and for the
Hilbert space in which the representation acts. In the
latter sense an element of a direct integral [~ dv(s)4(s)
is a function f(s) taking values in //(s) which is square-
integrable with respect to v:

S avSFlRy, <

(We shall always realize the Hilbert spaces as gen-
eralized L2-spaces in this way.) In particular, a mem-
ber of D, can be thought of as a function f (s, i*, p**),
where i{* is an integer in the range 1 <i{"’ <j{’ and, for
fixed s and i, f(s,i”, p'®) is the coefficient of an
element of the representation space D(s) with respect to
a basis of eigenvectors of J,. (Such coefficients were
abbreviated as a, above. ) If the support of v(s) consists
of discrete points, the direct integral is an ordinary
direct sum. All the discussion below may be rephrased
in terms of the spectral analysis of the operators @ and
J, in the various representation spaces.

We now prove the theorem by induction. (The major
step is from irreducible to reducible representations,
after which the extension to more than two factors is
immediate.) Theorem 1 says that the product of two ir-
reducible representations, D(¥) and D(s), has a direct
integral decomposition

D(r)@ D(s)= [F dw, (1) [ - D()] (1)

in which £, the value of ¢ corresponding to ¢=0 and
p=0 (the trivial representation), does not appear as a
discrete point [i. e., w,,({¢,})>0 is not true, where {#,}
is the set whose only member is {,]. We assume that this
statement has been extended to a tensor product of /-1
factors (I = 2), which may themselves be reducible
(direct integrals). Thus '

D, @D,,= [ e - D),
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where the same restriction with regard to the trivial
representation holds. Then we have

D1® ven ®Dt

= v ook o 1% o - o)

= [® au) ans) [ §9)- D)o D). )

The associative law used here is obvious if the direct in-
tegrals are direct sums; that it holds in general is most
easily seen by observing'® that the elements of the space
on either side of the equality sign are functions of the
type f(r, s, i:u), i‘:’,ﬁ(”,ﬂ(s’)-

Combining Eqs. (1) and (2), we have
D,®--@D,= fﬂa du(r) dv(s)dw, (1)

X[U52554") - D(B)]. 3
An element of this space is of the form
F(r, 8,8, 8,00, ilers) p)),

If this vector is different from zero in the L2-space
sense, then, for some set of values (7, s) with positive
measure, the functions f(7, s, ¢, ---) with fixed » and s
are nonzero on sets of positive measure in {. Hence it
is impossible that f could have its suppoxrt concentrated
at {={,—which was to be proved. An intuition for this
part of the proof can be acquired by imagining the inte-
grals in Eq. (3) replaced by direct sums; then one would
just “collect terms” corresponding to each value of ¢
and observe that {; is never present.

The proof of Theorem 2 involves only the general
properties of direct integrals. Consequently, it applies,
with appropriate changes in notation, to any Type I
group (see Ref. 12) for which the analog of Theorem 1
can be proved.

REPRESENTATIONS OF SO, (1,n)

By arguments closely analogous to those just given
for SO,(1, 2), the corresponding theorems can be proved
for SO,(1, 3) and SO(1, 4), on the basis of explicit for-
mulas for the irreducible representations of their Lie
algebras. A rather obvious conjecture is that the con-
clusions are valid for all SO(1, n).

Theovem 3: Let D, (j=1,...,1) be unitary representa-
tions of SO4(1,n), n=2,3, or 4, not all of which contain
the trivial representation discretely. Then D,;® D, ® -
® D, does not contain the trivial representation
discretely.

Proof for SO,(1, 3): The representations of the Lie
algebra corresponding to irreducible unitary group
representations are given by Naimark, ** For brevity
only the information directly relevant to the proof will
be cited here. There are six independent generators,
H;and F,, j=1,2,3; the H,; generate a subgroup iso-
morphic to SO(3). [Under the usual physical interpreta-
tion of SO,(1, 3) the H; generate rotations and the F, gen-
erate Lorentz boosts. | The irreducible unitary rep-
resentations are labeled by pairs of numbers (c, &,),
where (among other restrictions) %, is a nonnegative
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integer. The most general vector in a representation
D=(c, k,) has the form

hod R

23 23 Gy D3R,m),

k=ky m=-k

where

H,|D;k,my=m|D;k,m),

(H,+iH,)| Dk, m)=[k(k+1)=m(m 1)/ |D;k,m +1),

and

F,|D;k,m)=[k2—m?1/2C(D;k) |D;=1,m)
-mA(D; k) |D; k,m)

~[(e+12=-m*12C(D;k+1) |D; R+ 1,m),

with similar formulas for F,+{F,. Here
Alc, kg k) =icky/[k(k+1)],
Clc, ky; B)=ik™ [(k? — k2) (K% - c2) /(4F% - 1) ]!/2,
Following the proof of Theorem 1, we consider the

general vector in the tensor product of two irreducible
representations, D, D,:

< R ©

=23 25 X % aklml}azmzipl;kl’m1>

ky=hgy M1=-ky Rp=Rgy mg=-ky
® lDz?kzv my).

If ¥ is invariant, it must be annihilated, in particular,
by H, and H,. Hence one sees, by direct verification or
by knowledge of the SO(3) Clebsch—Gordan coefficient

kysm -
(Feyeymymy | 00) = (= 1) (28, + 1) 1 Oy, Oy my
that
¥= 3 a2k +1)"/?|D,, D,; k,0),
k=Rg
where
|D,, D, ; &, 0)

&
=(2k +1)1/2 "Ek (=1)"|D,;k,m)® |D,; k, —m).

We operate upon this vector with
F,=F{P’ @ 1+ 1FP?,

obtaining, after some redefinition of summation indices,

Fo= 5 3 (-1
b=k, m=-k

0
x{[¥? =m2]'2[C(D, ; k)a,
~C(D,; R)a,,] Dy k=1,my® |D,; ky —m)
—-ma,[A(D,; k) ~A(D,; k)] | D, ; kym)® | Dy 3 ky ~m)
- [#* - m*}/2[C(D, ; R)a,,
- C(D,;R)a,] [D,; k,my® [Dy; k=1, ~m)l.
Every coefficient in this expansion must vanish if ¥ is
invariant; hence

A(D]_ 3 k) =A(D2 3 k)!
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C(Dl 5 k)ak:C(Dz H k)ak-p
C(Dy; kYa,=C(D;; kYa,,.

1t follows that C(D, ; k)= C(D,; k) and, most importantly,
that a,=a,., unless C(D,; k)=0. (The formulas for A
and C then imply that %, =k, <k, and ¢, =c,; i.e.,
D,=D,.)

For a nontrivial unitary representation (¢, imaginary
or |c,1<1), we have C(c,, ky ; £)=0 only when k=Fk,y,.
Thus the coefficient a, has the same value for all & in
the representation (k= k,=k). Since the vectors
|D,, D, k,0) are normalized, the “norm” (squared) of
¥ is

T | ay|? @+ 1) =,
rek,

and ¥ is not in the Hilbert space. This establishes the
analog of Theorem 1.

The argument of Theorem 2 now applies to complete
the proof.

Proof for SO(1, 4): Since the ideas are the same as
before but the explicit formulas become voluminous, we
simply outline the argument. The representations are
given in a convenient form by Strém. !5 There are ten
generators: the M, (j=1, 2, 3) generate S0(3), the P,
and M, generate SO(4), the N, and M, generate SO(1, 3),
and P, (which commutes with the M,) completes the Lie
algebra. The basis vectors of an irreducible representa-
tion D of SO((1,4) are |D ;n,l;j,m), where j and m are
SO(3) indices, and # and ! label representations of
S0(4).1®

The normalized SO(4)-invariant vectors in a tensor
product of two SO(1, 4) representations are of the form

2 _ p2y-i/2 121 F] X .
& -n%) 2 2 (=" [Dsn,lsj,m)

J=In| m=-j

®|Dy;n, 154, —m).

[Since the structure of the representation formulas for
SO(4) is very similar to that for SO(1, 3), this result
can almost be read off from our considerations above
on the construction of SOy(1, 3) invariants. ] The most
general vector ¥ in the tensor product is a linear com-
bination of such vectors (summed over ! and n), with
coefficients which we may denote a,, (1% - n?)*/2,

One operates on ¥ with P, [as given by Ref. 15, Eq.
(3. 3), with identities among the coefficients stated on
p. 458)], and requires in the result that the coefficients
of linearly independent basis vectors vanish. Just as in
the lower-dimensional cases, one concludes that |a,|
=la, | =+ for infinitely many values of the [ index.
Thus an invariant vector cannot exist with a finite norm,

I = 25 la,,|? (2 -n?).
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In the moment formulation, the direct-interaction approximation equations have been derived by
developing perturbation about three different states: the laminar flow (Wyld), a turbulent flow
(Kraichnan), and the Gaussian random process (Phythian). Along the parallel line, the pertubation
theories in the distribution function formulation have also been developed about the same three
states: the laminar flow (Balescu—Senatorski), a turbulent flow (Herring), and the Gaussian random
process (Edwards). Herring’s modal energy and averaged Green’s equations are the basic turbulence
equations of the distribution function formalism. The modal energy equation, however, represents the
simultaneous-time limit of Kraichnan’s covariance equation. This paper provides a unified statistical
mechanical framework for the three turbulence theories of the distribution function formalism. We
have first revised the derivation of Balescu and Senatorski and then presented an alternate method

for Herring’s self-consistent-field approximation in terms of the action-angle variables. Finally, we
have shown that Edwards’ theory cannot give the totally correct stationary dynamics because it is
not possible to uniquely determine the dynamic friction and diffusion coefficient in the distribution

function formulation.

1. INTRODUCTION

Shortly after Kraichnan!:? presented the direct-inter-
action approximation (DIA) equations, Wyld® has demon-
strated an alternate derivation by first developing per-
turbation about the laminar flow and then consolidating
certain classes of the expansion terms of all orders.
The DIA is the moment formulation, thereby addressing
itself to the covariance evolution. Instead, it is also
possible, and equivalent in a limited sense, to evolve
the distribution function of fictifious eddy particles as
in statistical mechanics. For the Liouville equation for
the eddy motion, Herring?® has devised the self-con-
sistent-field approximation (SCFA), thereby obtaining
the modal energy and averaged Green’s equations. The
SCFA equations represent the simultaneous-time limit
of the DIA equations. The main point of this paper is to
show that the theory of Balescu and Senatorski® rede-
rives the SCFA equations by the laminar perturbation
and renormalization. Hence, it bears the same relation
to Herring’s SCFA as does Wyld’s theory to Kraichnan’s
DIA in the moment formulation.

Balescu and Senatorski begin with the triad-interaction
representation of homogeneous turbulence and resolve
the velocity field variables into action-angle coordinates
(Sec. 2). The advantages of the action-angle representa-
tion are twofold: Only the reduced distribution function
averaged over all angle variables enters into the iso-
tropic turbulence theory (Sec. 3), and the nonlinear
interaction is elegantly expressed by the transition
matrix (Sec. 4). The disadvantage, however, is that it
cannot represent the Gaussian random process.” At this
point, we introduce the important ingredient of non-
equilibrium statistical mechanics developed by the
Brussels’ school. It is the general kinetic equation. We
shall show by a simple derivation that it represents an
elaborate rearrangement of the Liouville equation under
iterative perturbation (Sec. 5).

The kinetic equation is derived formally and hence ap-
plies in principle to the turbulent eddy motion as well as
the statistical mechanical systems. We must, however,
recognize the divergence of fluid turbulence from the
classical many-body problems (Sec. 6). (i) In the homo-
geneous turbulence, we have artificially created the
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concept of discrete, denumerable degrees of freedom
corresponding to the Fourier modes. Since the number
of Fourier modes in a box volume L2 is also propor-
tional to L, the number of eddy particies and the box
size are not independent. Hence, the thermodynamic
limit [i. e., the concentration (N/L?3) being finite as the
number of particles N —« and the volume L3 —~ «] has
no important part in the turbulence theory. (ii) In the
classical statistical mechanics, the distribution function
may be factorized as a consequence of molecular chaos.
In the homogeneous turbulence, however, the factoriza-
tion is implied by Kraichnan’s weak-dependence hy-
pothesis. ? Kinematically, in the limit as L — %, homo-
geneity requires the Fourier modes to be statistically
independent just as stationarity demands the random
process to have orthogonal increments. (iii) For the
fully developed turbulence theory, we can suppress the
destruction fragments which represent relaxation of the
initial correlation by means other than the triad inter-
actions. This is indeed in accordance with Kraichnan’s
maximal-randomness hypothesis.? (iv) The renor-
malization requires a new ingredient called the Green’s
operator. Since the theory of the Brussels school does
not involve the explicit formulation for the Green’s
operator equation, Balescu and Senatorski have guessed
at it from the nonlinear interaction diagram. Here we
derive the Green’s operator equation from the kinetic
equation.

The kinetic equation together with the Green’s opera-
tor equation provide a sufficiently general basis for
deriving the modal energy and averaged Green’s equa-
tions. Upon renormalization, they agree with the SCFA
equations (Sec. 7). Renormalization calls for estab-
lishing one-to-one correspondence between the con-
solidated term and a class of perturbation terms. This
tedious renormalization may be avoided by developing
perturbation about a turbulent flow which has the same
Green’s operator as the actual turbulent flow (Sec. 8).
Herring’s SCFA also relies on this sort of perturbation
scheme (Sec. 9).

The covariance of the DIA involves the two indepen-
dent time arguments, say ¢ and #, so that we can
evolve the covariance in the entire /—{’ plane. In the

Copyright © 1974 American Institute of Physics 1571
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distribution function formalism, the covariance is de-
fined in terms of the reference and difference times.
Since the reference time runs along ¢=1#’, the evolution
of the modal energy is restricted to the diagonal of the
t—t’ plane. More specifically, the modal energy equation
represents the simultaneous-time limit of Kraichnan’s
.covariance equation. We cannot directly recover the
DIA equations from the Liouville equation. This is the
inherent limitation of the distribution function formalism
(Sec. 8B). A further limitation shows up in Edwards’
theory® of stationary turbulence dynamics. There we
cannot simultaneously determine the dynamic friction
and diffusion coefficient. This is why Edwards’ theory
yields the dynamic friction with a relaxation factor
different from Herring’s SCFA (Appendix B).

Diagrams are used in this paper only as a shorthand
notation for bulky mathematical expressions. Hence, we

do not execute any algebraic operation with the diagrams.

2, EQUATIONS OF EDDY MOTION

The Navier—Stokes equations describe the motion of
fluids as continuum. In the homogeneous flow, we can
formally decompose the continuum dynamics into an
equivalent many-degrees-of-freedom problem by
Fourier analyzing the velocity field in a box of side L:

Ux, f)= < ") 2 Uk, ) exp(ik - x), (2.1)
where
n
27 ¥ R
k=fn, n=| n, |, n,n,n,=all integers .
: n

Then, the incompressible Navier—sStokes equations will
give rise to the Fourier-amplitude equations which are
infinitely coupled through the convolution sum

a 2
<az +vk>U,(k,t)

(2.2)

/2 3/2
== i(Z) " o0 Z e, 00j(a 1),

where v is the kinematic viscosity and P, (k)=5,, - k,k;/

k®. Since the incompressibility k,U,(k, £) =0 restricts

the motion to a plane perpendicular to the wave vector

k, we may span U (k) by polarization vectors®
Uk, )= 25  €ik)u(k, ).

u=1,

(2.3)

By definition, the polarization vectors €*(k) are per-
pendicular to k, k.%(k)=0, and orthonormal

€' (k)e;(k)=6,,. Further, the orthonormal vectors
(€e(k), €(k), k/k) satisfy the identity § e%(k)e¥(k)
=P, (k). Upon introducing (2. 3) into (2. 2), we obtain
the equations of eddy motion involving the three-
Fourier-mode interactions

a 2
(Bt + vk) ut(k, t)

("% z ol

L A, kepeq

e uMp, th(q, 1), (2.49)
where the coupling coefficient is
ot |35 = k- e(q)][e“(k) - €(p)].
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‘We have documented® '° the advantages of the triad-

interaction representation (2. 4) over the Fourier-am-
plitude form (2. 2); hence it needs no further elaboration
here.

In the remainder of this section, we put (2.4) in an
alternate form convenient for the statistical mechanical
formulation. Because of the reality requirement u**(k)
=u*(-k), we may rewrite the convolution sum as

2 w(p(Q)

k=p+q

= M,Zk wMplu’(k—p) + »Z>’; uM(pyu*(p —k)

+2uM*(p)’(k + p), (2.5)
P?

where 3 implies the sum over all p>0. Splitting (2. 4)

into the real and imaginary parts by u*(k) = v*(k)

+iw=(k), we obtain the equations with the positive wave

vector domain (k> 0)

(7 ) (o) =(2) " 2%

{(,,u.l,p (0 sutste ) <o) (st )
kizisen) |- 0X(p) o2(s(k ~ p) + w(p)sw(s(ic - ),

+ puiron ( vX(p)w’(k + p) - w*(p) v°(k + p) >
19209 \— y3(p) v%(k + ) - () (K + p)

(2.6)
where
— k—p, k>p9
s(k'p)f{p—k, k<p,
and
w’k-p), k>p,
[ — =
swistk=p) {—w’(p—k), k<p.

Since v* and w* are the 2D Cartesian coordinates, we
may transform them to a sort of polar coordinates
known as action-angle variables

v¥(k)=n}/2 cos2nt, ,,

2.7
w* (k) =n/? sin27¢, .
Therefore, the triad-interaction representation in
action-angle variables becomes
Ny,u + 2VE 0, ,
== 2(277/14)3/22 E { i”l;:.l(:-p) ns(k-p).ﬂ Sinz"A
+ ¢:I;,?koy) n(tﬂ)) ) SIDZTTB} 1'/"2 nt,/:’
R 1 o2 3/2
€= = o7 ( ) E,Z,) { OE 1y beepy Malipy ,» COS2TA
+ O M cos21rB} ny/% n;‘,{z, (2.8)
where the.dot denotes 9/8tand A=£, , ~E ,=SE p .0

and B=§,  +E_ ,-¢&, . Note that the above differs
from Eq. (2.10) of Ref. 6 by the factor 2(2n/L)%/2, Be-
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cause of the square root, the action variable itself

represents the modal energy (divided by density)
Me,u = v (k) +w (k). (2.9)

The action-angle variables are canonical in classical

mechanics. In the inviscid limit, (2. 8) obeys the
Liouville theorem

a'flk u aék 1)

w4 Bk g (2.10)
M, %y ’

implying invariance of the measure of a point set in the

phase space,

3. THE LIOUVILLE EQUATION

In the phase space spanned by n={n, ,} and £={¢, .},
the evolution of the distribution function F(n, &,1) is
governed by the continuity equation

(3.1)

where the Liouville operator is
A 2 . 9 .
=2 D+ 50—kl
L X ? a”lk.um'“ Oy,

Because of (2. 10), we can therefore reduce (3. 1) to the
so-called Liouville equation

aF < . a : 0
LRl Al -

Since it is not any more advantageous to use (3. 2) than
(3.1), we shall directly work with (3. 1) and hereafter
call it the Liouville equation. The flow system may be
rendered conservative by suppressing the viscous ef-
fect: Either drop the viscous term altogether or coun-
teract the dissipation by external forces. The measure
of F is time-invariant for conservative systems; we
may then normalize F for all ¢

[ an [acFm, £, H)=1. (3.3)

Let us expand the distribution function with respect
to the periodic angle variables:

F(n, &, t)=(§f(m,(n, t) exp(i2mmE), (3.4)

where {m} represents the set of all integers

{eee, my,,y .. }and me=33 3, m, , & .. Multiplying
(3. 4) by exp(— 2imm’ t) and integrating over all ¢, we
find that £, (7, t) are the Fourier coefficients. In
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particular, we have

for(m, )= [ dE F(n, £, 1). (3.5)
That is, fiy(n, ) is a reduced distribution. We shall

show presently that it plays the central role in the
isotropic turbulence theory.

Isotropic energy spectrum

In the homogeneous field, the spectral tensor is de-
fined by

o, ,(k, t)=U‘,§k,t$U,ZE, D), (3. 6)
where the overbar denotes ensemble average. In terms
of the action-angle variables, we find that

UHK)U,(k)

=2 eednim!} expl-i2n(gy,, - &) (3.7

Therefore, by averaging over the distribution function
(3.4), the spectral tensor takes the form

@, ) =2 ) €(k) [ dnny,, fioy(n, 1)
+ T g®ek) [dnni/zn/?

XF (g, 4 oo1y,,1 (> D (3.8)

s 1Y

where {1, ., -1, }={...,0,m, =1,m, ,=-1,0,...}
Denote the first integral of (3. 8) by

I, (8) = f anng, .S 0, ). (3.9)

Let us now suppose that
@ [ anmiZ 0’2 fuy ) D=0 (n#v), (3.10a)

(ii) I, ,(?) are independent of i, (3.10b)

(iii) I, () are functions of k. (3.10c)

Then, by identifying

Iy, ()~ () = E(k)/4nk?,

where E(k) is the energy spectrum, the spectral tensor
reduces to the well-known isotropic form" &, (k)

=P, (k) E(k)/4mk?, Clearly, (3.10) states the isotropic
requirements: (i) imposes the reflexional symmetry,
(ii) guarantees the rotational symmetry, and (iii) de-
mands the spherical symmetry of isotropic scalar func-
tions. For the isotropic theory, therefore, f, is all
that we need to compute the energy spectrum.
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TABLE 1. Typical simple transitions,
Type Mathematical expression Vertex diagram
I ©IL T g a =1, Mg g= =1, Mg =)
i fe2n 3/2f_ als,y _ 3 ES .,71/2.”1/ 5771/3'
=3 (T) ( I 517 o - & g — e s - oo, e,y BTy
| q- q ’ 'y
i} (Maa =11 L8l o g=1,m" (g0, =1) :
q’
i [am\ 32
=7z (f) L ( X gy e, qan "' A E ) 2kl .
q-q, )’
jass <mq',5:1, mq_q' —1‘[_':'08,'7 ol m’ ' ) ql’.B
3/2 3.9
i {27 9 - 9 - 9
=T§<f> g .sné-/«f'.r(d’%‘u'ﬁtfq-q' EranialZ 4 MV rd & (XY W) n4la .
v Mau=1, Mg g=—1, Megr =—11L"TE%0010) aq»y
N q.@
i fam\3 9 — ) - 9
=7z ( ) ﬂtlz,/:?my,zsﬂ«l;-/qz',r ( ¢n|u’ a-q’ Mo + ¢€1’|’6‘."u',u Mt s + ¢£3‘"I€l.q' m’;) ql,B
]
q-q ’-y
4. TRANSITION MATRIX X§(m, , = a=m,,)0(Myxegy,o— S —Myxp),,)
Let us introduce (3. 4) into (3.1). By separating out e 12 )
the Fourier components f (1, t), we obtain an equivalent + Ok ks Mg, Sy, F A=y )
infinite set of Liouville equations x&(m, , +a~ mp,l)é(m’kw.p —a- mkmp)}
X T d(mly ,— My o) (4.5)
9 , 1 , K #K,p,ks " ’
‘]l"é)tﬂ—):(?)<mll Im Y fimy (1, 1), 4.1) _ a¢u.:.n ’
Again, compare i(27/L)3/? with the factor - (i/2)(27/L)®?
where in Eq. (2.18) of Ref. 6.
m|/ |m'y= [ deexp(—i2mm¢t)/ exp(i2mm’t).  (4.2)

We shall compute the elements of (4. 2) by introducing
the Liouville operator

L) =25 m|L3.]m)

+Z7 z (m [ g2by |m). (4.3)

kK.p u,

Here the first term reflects the angle-independent vis-
cous effect

2
m|[3,.|m) =20k s——my , 8(m =), (4.4)

and the second term is derived from the nonlinear
interaction

mlL ek,

. 217)3/2 ( )
"(L asztl o, Bnk,u
I's

[x,p
x{¢:lp,s(k-n)ns(k-p),v G(m,k,u +ta- mk.u)

|m’)

My,u\ 172 1/2
2’”! u)nk unn.
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The simple transitions

Following the Brussels school, we shall call

q q q
TYPE I q! q' q'
q-q' q'-q q+q'
q' q' q'
q-q' q'-q q+q'
q| ql q|
q q q
TYPE WL
q-q' q'-q q+q'
q q q
TYPE IZ q 9 q' 9 q' 9
9-q' q-q q+q'

FIG. 1. Simple transitions (o, 8, and vy deleted).

TYPE II
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(m1{/ |m') the transition matrix from state {m'} to {m}
(always read from the right to left). We then see that
the viscous term induces no state transition, whereas
the nonlinear interaction brings about transitions be-
tween the states which are constrained by the § functions
in (4. 5). Since the isotropic turbulence theory evolves
around the state {m}={0}, we shall consider a class of
transitions, called the simple transitions, between the
states represented by m =0 and + 1. By the complete
enumeration of (4. 5), we find 12 distinct simple transi-
tions. They can, however, be divided into four types,
each having the typical member as shown in Table I.

In the table, there appears the symmetrized coupling
coefficient

(4. 6)

we
av
o >

wiX, 0 _ puld,p
klp,q _¢klp.q+ ¢

Note that we have introduced the factor 27!/ into the
simple transitions, so as to avoid double counting the
elementary interactions composed of two simple transi-
tions. The first simple transition (Type I) of Table I is
obtained as follows: Consider {m}={0}and {m’}
={,...,0,m} ,=1,my ,=-1,m_, =-1,...}. There
are six ways that transition from {m’} to {m} can be
realized:

1) (@, @)=k, p),(@,B)=(@,\), (a-a,7)=&-p,p),
(i) (@, @)=, p),(@,B)=(k=~p,p),(a-a,¥)=(p,}),
(iii) (q, @)=(p, ), (@, B)=(k, u), (a-a',¥)=(p-k,p),
(iv) (@, )=, ), (@, 8) =P~k p), (@~ 7)=(k, u),
V) (@, @)=&+p,p)(@,B)=(p, ), (@d-,7)=(k, L),
(vi) (a, @)=(k+p,p), (@,R)=(k 1), (@=q,¥)=(D,2).

The transitions (i) and (ii) give the term multiplied by
8T - Similarly, (iii) and (vi) give the term multi-
plied by ¢} 7:& ., and (iv) and (v) the term multiplied by
@138 Upon adding these, we obtain the simple
transition of Type I; the remaining three types can be

verified similarly.

Since the simple transitions have bulky mathematical
expressions, it is convenient to have a shorthand notation
for them. To this end, we adopt the vertex diagram
constructed by the following rules: (i) Represent
{m|/’im’) by a small circle to which we attach lines
for the nonzero elements of {m} and {m’}. (ii) Place the
lines (if any) for {m’} to the right of the circle and the
lines (if any) for {m} to the left of the circle. And, (iii)
attach an arrowhead pointing to the left for the lines
corresponding to the positive elements of {m}and {m %,
an arrowhead pointing to the right for lines corres-
ponding to the negative elements. By using this diagram-
matics, the simple transitions can be represented by the
vertex diagrams of Table I. The two other transitions
of each type are shown in Fig. 1. For each diagram of
the figure, the conjugate pair is obtained by simply
reversing the arrowheads. Of course, the particular
configurations of the diagrams are immaterial because
they are a topological representation.
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Now we can convert the vertex diagrams into the
corresponding mathematical expressions by the following
recipe: (i) Assign a plus sign to the incoming arrows
and a minus sign to the outgoing arrows (at each vertex,
the incoming and outgoing wave vectors add up to zero).
(ii) Interpret the open circle as the summation of three
lines attached to it. (iii) Associate the line with the
indices, say q and @, with

* 1/2,1/2 L1/2
nq.ann’ .an-u’ 7

alByy
qle,e-q

Mq,a

[where (¢’, B) and (q —q',y) are the indices of the two
other lines] if it appears to the right of the circle, and

1/2 ,1/2
an nq’.Bnq-u'.v

.

1/2 FolByy
nq.a ¢,

if it appears to the left of the circle. And, (iv) intro-
duce the factor (i/v2)(21/L)*/2 to complete the expres-
sion. With this convention, we can recover the mathe-
matical expression for any of the vertex diagrams in
Fig. 1.

5. THE GENERAL KINETIC EQUATION

After having defined the simple transitions, Balescu
and Senatorski follow very faithfully the theoretical ap-
paratus of nonequilibrium statistical mechanics de-
veloped by the Brussels school. The starting point, and
by far the most essential step, is the general kinetic
equation which was originally derived by Prigogine and
Resibois. 2 In fact, it represents a rearrangement of
the products of transition matrix elements which would
appear under the iterative solution of Liouville equation.
The derivation of Prigogine and Resibois involves de-
composition and rearrangement of the iterated transi-
tion matrix elements with the aid of the diagrams; how-
ever, Zwanzig'® has later presented an analytic deriva-
tion using the projection operator technique. For the
purpose of demonstrating the gist of kinetic equation,
we present here an elementary derivation for the leading
terms of the kinetic equation. In turbulence work, how-
ever, the lowest-order terms are kinematically very
important because they share the same structure with
the renormalized lowest-order terms. In this respect,
the present derivation is more than an illustration: It
actually serves as a practical tool in the subsequent
discussion.

For the notational compactness, rewrite (4.3) as

(m|f |my=/°6(m=m')+ m|[ " |m), (5.1)

where
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Then (4. 1) takes the form
LoD ofim, 0+ 5 I 1) S, ) (5.2

By treating the second right-hand side as the inhomo-
geneous term, the formal solution is

Fimm, )=exp(/ °8) f (;y(n, 0)
D [ ar expl (- 1)]

X{m|[ 7| f ey (0, ). (5.3)

Now solve this by iteration. The iterative solution of
the second-order is

f(,,,}(‘rl’ t)=exp(/ °t)f{m)(n, 0) + (;} f(: dr exP[[_ (t- )]

X{m|['|m') exp(f ) iy (n, 0) + %}) (?’) fotdt,

xfot,dt" expl/ %t =t')] (m|[" |m?) exply (¥ - )]

Xm0 f iy 0, 17). (5.4)

Upon differentiating with respect to {, we obtain the

following equation which is a simple variation of (5. 2)
without any approximation:

aflm)('nr t)
ot

=/f i, 1)+ {;) (m|[ |m’) exp(f °t) fim\(n,0)
+ 5 % [far om|s | myespls (- #)]

{m*} (m'"} "0

X [ ) Frue (0, 2. (5.5)

We have therefore decomposed the second term of (5. 2)
into the last two terms of (5.5), which may be con-
sidered as the equivalent interaction terms. By iterating
(5. 4) to higher orders, we can further decompose the
second term of (5. 2) into arbitrarily many equivalent
interaction terms. Upon singling out the term for {m’'}
={m}, we obtain at once the leading terms of the
general kinetic equation

af(ngt(ﬂ, t)

=L im0+ 2 [ L’ |m") el )f (0, 0)
+ 5 [faronl g [y exply (e- )} | |m)
Xf im0+ e, (5.6)

where the three dots denote the double sum

(m} (m Telm)
We shall show that the second and third terms of
(5. 6) are the respective leading terms of the destruc-

tion and diagonal fragments. The general kinetic equa-
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tion of the Brussels school has the form":*
a 3 t (-]
l‘l"_a)g_n__) =L f(m)("l: t) +0mm’(t)
]
+f0 At &t =) f (s V). (5.7

Here the destruction and diagonal fragments are given
respectively by

D ()= (218)" $ dz exp(zt)

X ety D (2 f i1 (1, 0), (5.8)
Enlt)=(2mi)" §_dz explzt) & ,(2), (5.9)
where
D (2)
=5 ol (=L e M)y (5.10)
ém(2)=§ (m|[ [(z= L2 T |m) e (5.11)

The subscript irr implies that no intermediate state is
identical to {m}. Note that (5. 8) and (5. 9) are the
standard inverse Laplace transforms with the usual
integration path denoted by gﬁc. Considering the leading
terms of (5.10) and (5. 11), we have

Dmm’(t)z 2 ‘ <m‘L' ‘m'>9XP(L°t)f(m';(TI,0)+"',

{m’ }#{m)
(5.12)

Enlt)= 2 (m|[" |m") explLot) Gm' |7 [m) + - (5.13)

In (5. 13) we have used the decomposition formula

ombaglmt = 2 (ml A lm) o7 | 1m0,

where 4 and 3 are operators involving (z -/ °)™ and L.
The substitution of (5. 12) and (5. 13) into (5. 7) verifies
that the leading terms of the destruction and diagonal
fragments are identical to those derived in (5. 6).

6. TOWARDS THE TURBULENCE APPLICATION

The kinetic equation has been derived formally; hence
it applies to both the turbulent eddy motion and statisti-
cal mechanical systems. Since the similarity between
the eddy motion and classical many-body problem is
superficial, the application of (5. 7) to turbulence must
take into account the divergence between them. The
classical statistical mechanics deals with a system of
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N particles contained in the volume L%, Then, the con-
centration (N/L?) must be finite in the limit as N—«
and L —, thereby assuring finiteness of the intensive
thermodynamic properties.” This thermodynamic limit
must therefore be incorporated into the construction of
a distribution function in order for it to be physically
sensible. In turbulence, however, we have artifically
created the concept of discrete, denumerable eddies
corresponding to the Fourier modes. Since the number
of Fourier modes in a box volume L3 is also propor-
tional to L3, the number of eddies and the box volume
are no longer independent parameters. Consequently,
the thermodynamic limit plays no important role in the
turbulence theory. Often the position coordinates are
Fourier analyzed in statistical mechanics.” The use of
Fourier representation there has the purpose of re-
ducing the unperturbed Hamiltonian to a diagonal form,
whereas the interaction Hamiltonian becomes off-di-
agonal. This therefore permits approximation of the
interaction Hamiltonian in terms of the vacuum state.

Under the disguise of deceptive simplicity, (5.7)
actually represents an infinite perturbation expansion
about the laminar flow. To bring it to a form useful
for turbulence work, we must therefore introduce such
turbulence concepts as Kraichnan’s weak-dependence
and maximal-randomness hypotheses and Green’s
operator.

A. The product hypothesis

Let us assume factorization of the distribution function

f(o)(n, t)= knu ﬁP(nk,u, £). (6.1)

Here, ¢(n,,,,1) is the single mode distribution
<P(Tlx,u, t) = f(k.u) dﬂf(o)('fb t);

where [, ,, denotes the integration over all action

variables except 1, ,. For a conservative system,

(3. 3) implies the normalization

(6.2)

[ dny,, olng,,, H=1. (6. 3)

In the classical mechanics, the factorization is a con-
sequence of molerular chaos. In turbulence, (6. 1) states
the statistical independence of Fourier modes in the
homogeneous field. In the limit as L — <, homogeneity
requires the Fourier modes to be statistically indepen-
dent just as stationarity demands the random process
to have orthogonal increments. Indeed, the product
hypothesis embodies Kraichnan’s weak-dependence
hypothesis. In Appendix A, we shall briefly show that
the cycle approximation (Sec. 6D) of kinetic equation
cannot generate statistical dependence from the initial
independence.

B. The destruction fragments

The destruction fragments represent relaxation of the
initial correlation by means other than the triad inter-
actions. For the fully developed turbulence theory, it
is therefore natural to suppress the destruction frag-
ments

af(m}('fl, t) —

5 LoFm@ D+ [1d8 £ (=) fimm ). (6.4)
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We must, however, specify the initial condition f,,(n, 0)
which will then be relaxed through the diagonal frag-
ments. The suppression of destruction fragments is
consistent with Kraichnan’s maximal-randomness
hypothesis which postulates the fully developed turbu-
lence to be as random as is possible consistent with the
Navier-Stockes dynamics, but not at all dependent upon
the initial and boundary conditions.

C. The Green's operator equation

The general kinetic equation is useless for strong
turbulence, unless we can consolidate it by summing
up certain classes of the expansion terms of all orders.
This consolidation process is called the renormalization.
To carry out renormalization, however, requires the
Green’s operator equation. Balescu and Senatorski
suggested the Green’s operator equation from the in-
spection of the interaction diagram (their propagator
equation given by Fig. 8 of Ref. 6 is in error; no double
line should appear along the cycle loop). Here we shall
derive the Green’s operator equation. This is not an
unusual proposition because the Green’s operator
exp(/ {) also satisfies the Liouville equation.

Recall that f,, is the average of F over all £, and f,,
are the fluctuation amplitudes with different periods.
Let us consider the perturbation of f, induced by a
disturbance to the mode (k, (1) and denote it by f (g, )7
where {1, ,}={...,0,m, ,=1,0,...}. Then, its équa-
tion can be written down from (6. 4):

afuk'“) (n, t)/8t

=L Fuy oM O+ [jdt =8y mE). (6.5)

We now extend the product hypothesis

f“'l,u}(n’ t)=< (p(nq.ur t))g(nk,u’ t)- (6. 6)

(@) #(k,pn)

In analogy to (6. 1), this amounts to factoring out the
averaged Green’s function from the velocity covariances.
After inserting (6. 6) into (6.5), the integration over all
n but n, , yields the Green’s operator equation

ag(m,u, t)/at=L§.ug(ﬂx.u’ £)
+ f: ar f(k,u)én&x.u (=)

X A ,
((q.v)l;[(km) ‘p(n"-v’ ¢ )>g(nk,u’ t ),

(6.17)
with the initial condition g (M, 0)=1.

D. The cycle approximation

The leading term of the diagonal fragments for {m}
={0} is
Elt)= T Ol [m')exp(s t)(m' |£710).

m’ }

(6.8)

Recall that {0t/ |m’) and (m’ |/’ |0) have the three sim-
ple transitions of Types I and IV, respectively (Fig. 1).
For the sum 3,4, we must therefore consider all
possible combinations of these transitions. Using the
vertex diagrams, we have
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L 7} A. Modal energy equation
" o Differentiate (3. 9) with respect to ¢ and insert (6. 4)
So)=2 }_‘2 ,{E .m‘ for 9f,,,/8t. With the use of (6. 10), we then have
PRV W
olx, . (1 o ¢
~— "‘ka_:(")‘ mfdnnx,u {L Fro1(Ns t)"‘zfo dae
K
Kepr Kk, TN
T T * P2 N
m m } TL 2 e S 9)“‘"'} ,
+ 2 () e () + = () ] ()

+ N T

{three diagrams as in the above
kX u.dep

with the arrows reversed}, (6.9)

where the double line with the index (k, ) is the diagram
representation for exp(/ 3 , t). In view of (2.5), we can
combine the three diagram terms in the curly bracket
under one sum . Since the two sums over k are the
same, (6.9) finally reduces to

L 7]

o
5o(t>=2f&§u§>m .@. :
e/

Similarly, the simple transitions of Types II and IiI
give the lowest-order diagonal fragments for {m}

:{lk.u}

(6.10)

[ —
& LT

(6.11)

Since the diagrams of (6. 10) and (6. 11) have the con-
figuration of a closed loop connecting two vertices, they
are referred to as the cycle approximation.

7. PERTURBATION ABOUT THE LAMINAR FLOW

The kinetic equation together with the Green’s opera-
tor equation provide a sufficiently general basis for
deriving the modal energy and averaged Green’s equa-
tions. The theory of Balescu and Senatorski, however,
involves only the kinetic equation with the viscous ef-
fect suppressed, and they introduce a propagator equa-
tion into the formulation during their “simple renor-
malization” process. As mentioned in Sec. 3, the vis-
cous effect must be counteracted by suitable external
forces. This is because the use of macroscopic viscosity
amounts to injecting irreversibility into the statistical
dynamics in an artificial manner. Nevertheless, the
viscous term in perturbation suggests the structure of
dynamic relaxation by the nonlinear interaction. Hence,
the presence of viscous term, properly counteracted,
will not detract from the conceptual consistency. In
fact, the simple renormalization of Balescu-Senatorski
is automatically accomplished by the viscous term.
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(7.1)
where the three dots are the higher-order terms of the
diagonal fragments. Referring to the formulas in Table
I, we can readily recover the corresponding mathemati-
cal expression for the diagram term (by dropping

&, 2, p and abbreviating $¢!:2 by &,, ete.):

Imaq
() $2 z, fanf o

X’h[‘f’x e by a—n‘: - Pry T ] L/zglizpi/e
xexplf g(t-6)]expl/ 2(t—0)]expl/ ;. (£ ~0)] i 2n}/2il2
0
[ ¢‘T+¢P§n—a_+¢knan ]f[o}("l, 9). (7.2)

Carry out the n integration with the product hypothesis.
Always assume ¢(n, ,,t) and 9¢/dn, , to vanish as

Mg, — ©. Multiplying out the square brackets, we find
that the expression operated by ¢,2/0n,+ ¢y.,3/91,.,

of the first bracket integrates out to zero. After partial
integration, the modal energy equation becomes

(%-;—zuk?)l,,u(t):(%)s? 2 J, a8

X{(&‘{izi- F Ge,u(t-6,6)
XU, (t=0,0)Us., (t—6,06)

~ ik Baltntk URu(6- 6, 6)
X G2, (t -6, 0)US. ,,,(t - 6,6)
- BEibks Prdllh UR, (1= 6,6)

XU, \(£-6,0) Gy, (L8, 6)} +oee,

(7.3)

where the three dots are the higher-order terms. The
significance of the statistical functions

Us, (t=6,0)= [ dn, ,ni/2expl/ 5 ,(t- Ont2 o, 6),

(7.4)

G;,u(t - 3, 6)

2
== [ dn il exply (- O)In i('%L) (7.5)
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will be explored presently.

First, consider the velocity components n{{ 2 at time ¢
and ¢+ 7. During the time interval 7, the flow system is
assumed to evolve by the adjoint operator of /¢ ,. We
then assert that U; (7, £) is the covariance of such two
velocity components. For the simultaneous-time argu-

ment, Up (7, £} reduces to the modal energy I, ,(). This
is because Us,.(0, 1) is the average of two n}/ f, both at
time ¢, weighted according to ¢(n, ,, t);

U, (0, 0)= [ dny /2Py, . - (7.6)

Now suppose that the flow system under consideration
has the Liouville operator /¢ ,. Then the average of
n/2 at time ¢ and n/2 at time t+ T is'? given by

J e, @0 YL exp(7, DN, (7.7)
where /3 = - 2vk?n, ,8/9n, , is the adjoint of / § . By
partial integration, we can reduce (7.7) to the
covariance

U:, u.(T’ t)=f dn!.u niv/f exp([kc.u T)T];,/f qo(nk.u.’ t)' (7' 8)

Secondly, we show that the averaged Green’s function

k,u k,u

Gy, (1, D) == [ dny,,mb!% exp( £, VML a—"’—%u——) (7.9)

k,u

is identical to the phase-correlation function. Expanding
out exp(/ ; ,7) in (7. 8), we obtain by partial integration
that
Ug (1,0 =I, (1) [1 - 2vk*7/2 + (2vR?T)?/21 22+ - ]. (7.10)
The square bracket is the phase-correlation function.
By the expansion of exp(/ ; , 7) in (7.9), we find that the
square bracket of (7. 10) is nothing but the averaged
Green’s function. Hence, this leads to the fluctuation—
‘dissipation relation for a conservative system in ther-
mal equilibrium?
U, (7, t)= =I, () Gy, (7, 0). (7.11)

With the use of (7. 11) the right-hand side of (7. 3) is

expressed in terms of I and G°. To complete the

statistical formulation, we must therefore derive an
equation for Gg |

B. Averaged Green's equation

We begin with the turbulent averaged Green’s function

d t)
Guna(rs 0= [ i, mil2G e, Itz ZE e,

.12
ank.u ( )

which is defined by replacing exp(/ ¢ , 7) in (7.9) with
the Green’s operator g (ny,,» 7). Now differentiate (7.12)
with respect to 7 and insert (6. 7) for ag/ar With the
use of (6. 11) we then have
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3G, (7, 1)
oT
== f dnk.u ’?i./f {Lko.u g(nk.u’ T) + j: de j(‘k.u) dn
P.A
(r-8)
. ni/? (P(le,uyt) .
Xﬁn.wg(x.u)(p(n“'w )g(m'u, )} O
(7.13)
By consulting Table I, we can readily write down the
mathematical expression for the diagram term
i
& (B o5 [0 ] dnyinyen.y
ry _a_ + o _a_. + @ __a
M= Fe 5+ Bo gy + B ank.,]
xn3/2nt/2 expl/ (- 0))expl/ o, (7= 6)Ink/2ny /2
=8 9 _= 9 1/2
x[¢‘ om 2o, ~ P an.,] T
x@(n 5, 0)P(My.ps )G (M, 6)
,nl/Z a(P(nk, t) (7. 14)

Cy
Again, the expression operated by ¢ 3/dn,+ ¢, ,3/0n,_,
of the first square bracket integrates out to zero. Fur-
ther, ¢, 8/0n, of the first square bracket operating on
¢, 9/9m, of the second square bracket gives no contri-
bution. Hence, the averaged Green’s equation becomes

(a—aT- + vk2> Gy, (7, 1)
i g e
P A2
X[alk"'lt:i-p 4’)‘11:-;,'”' Gy,.(6, )Gy (1= 8, 8)

X U;—D.P(T -6,0)+ $H;::-p $k-‘;=#:: Gk.u(e’ )

XU (T- 6, 8) Gy, (T~ 6, 6)]+ (7.15)

where the three dots represent the higher-order terms.
The initial condition is G, ,(0,%)=1.

C. Renormalization

The modal energy and averaged Green’s equations are
the laminar perturbation expansions; hence they are of
no use unless the nonlinear interaction is weak. For
strong turbulence, Wyld has shown that certain classes
of expansion terms can be consolidated, thereby in-
corporating the dynamic effect of a certain kind of the
nonlinear interactions of all orders. Although Wyld’s
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work is based on the moment formulation, his observa-
tion is valid for the distribution function formulation be-
cause of the diagram similarity. Of all the expansion
terms in (7. 3) and (7. 15), there are those made up of
compositing a number of the respective first-order
terms. Then summing up such expansion terms amounts
to replacing U°— U and G°— G in (7. 3) and (7. 15). In
analogy to (7.12), we define the turbulent covariance

Up,u(, )= [ di, , mi/2G o DINE/ 20y, B, (7.16)

by replacing exp(/;, ,7) in (7. 8) with the Green’s opera-
tor. Balescu and Senatorski justified this heuristic re-
normalization rule by invoking Resibois’ factorization
theorem!® which asserts that if two subgroups of eddies
are temporarily interacting independently one from the
other, the time ordering between the interactions in-
volving eddies of the first group and eddies of the second
groups is completely irrelevant. In any event, the
modal energy and averaged Green’s equations have the
renormalized lowest-order contribution:

<567 +zuk2) I, ()

-(3) 2z fa
{(qs';,';;;_, Y Gy, (t=06,0)U,,(t~6,0)U,_, (t-6,6)

= BE 15k-n Folrpik U, ull = 6, 6) Gy p( = 6, 6)

X Usep ot = 6, 6) = BH5iE, ¢k-‘;:‘k‘,l U,.(t=6,0)
XU, (t=6,6) Gy, (t- 6, 9)}, (7.17)
<—?— + Vk2>G o7 1)
oT k
=-3(F) 2z
{¢i‘ltz£—,¢:lk-:::ck.u<e, )G, (T~ 6,6)
X Uyep, (T = 6, 0) + BEi5E 5 Pubifty Gr, (65 0)
XU, \T=6,0)G,, (T8, o)}, (17.18)

with G, ,(0,#)=1. And, the fluctuation—dissipation
relation in renormalized form,

U, ,u(-r, t)=Ik'u(t) Gy, (7, 1),
provides the link.

We shall show in Secs. 8 and 9 that (7. 17)—(7.19) are
Herring’s SCFA equations. They describe the evolution
of covariance for the simultaneous-time arguments
and prescribe the covariance for the nonsimultaneous-
time arguments by (7.19). Since Kraichnan’s DIA
evolves the covariance in the entire {—¢ plane, we show
the correspondence between (7.17)—(7. 19) and the DIA
equations in the simultaneous-time limit. According to
the definitions (7. 12) and (7. 16), the reference time ¢
refers to the overall flow system, whereas the dif-
ference time 7 reflects the dynamic relaxation. To
accentuate the dynamic relaxation, we shall therefore
suppress the reference time argument:

Uy, (T, 8) = U, (7), and Gy, (7,) = G, (7). Invoking the

(7.19)
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isotropy requirements (3. 10), we impose the rotational
symmetry, U, (T)=U(1)/2, L ,(6)=I1(8)/2, G, ()
=G,(7); and the spherical symmetry, U (r)=U(k, 7),
I(t)=I(k,t), G(T)=G(k, 7). Further, identify I(k, )
with U(k, t), implying that I(k, t) is the simultaneous-
time covariance U(k, t). After summing over u, we
obtain the isotropic form of (7.17) and (7. 18):

a 2
(5[ + 20k ) U(k, t)

=2nk [’ o [.J apdapa{atk,p, q)G(k,t - O)U(p, 1 - 6)
XU(k = p, t - 6) = bk, p, q) U(k, t = 6)G(p, £ - 6)
XU(k_pyt_e)}y (7. 20)

<a—a; + Vk2> G(k, T)

=~k [ a6 [.J @b dapabik, b, q)G(k, 7= 6)G(p, Ok ~ b, ).
(7.21)

Here we have used the usual notations:

lim (2n/L) S~ [dp=2r fA [ dp dq(pq/®),

a(k,p, q)=(1 - Xyz = 222y2)/2,
and

b(k, p, q)=(p/k)(xy + 2°),
where x, vy, z are the cosines of the interior angles op-
posite to the legs &, p, q, respectively. Note that a and
b are derived from
27 (B[, =28%(1 — xyz - 22%°)

wak.p

and

D0 B, Btk =2kp(xy + 29,

We see that (7. 20) and (7. 21) are identical to the iso-
tropic DIA equation in the stationary turbulent field,
evolving along the diagonal of the {—# plane.?

8. PERTURBATION ABOUT A TURBULENT FLOW

In Sec. 7.3, renormalization was carried out by
simply replacing exp(/ { ) in the first-order laminar
expansion terms by the Green’s operator. Of course,
this recipe is too heuristic to stand up to a rigorous
argument. As in Wyld’s work, it is necessary to dem-
onstrate that the renormalized term actually includes
a certain class of the expansion terms of all orders.
Such a renormalization procedure is indeed very tedious.
We shall therefore propose a way out of it, thereby
avoiding the actual summation of laminar expansion
terms. A lesson learned from the heuristic renor-
malization is this: If we would develop perturbation
about a reference flow state which has the Green’s
operator (/(1, ,,¢), then the modal energy and averaged
Green’s equations will have the lowest-order terms
given directly by (7. 17) and (7. 18). Unlike the laminar
perturbation, we do not know a priori the reference flow
state. In the present perturbation, therefore, we must
treat the reference state as an unknown and determine it
along with the turbulence dynamic equations. This sort
of philosophy is common to recent turbulence
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theories. #:8+18

Let us go back to the Liouville equation (5. 2). Intro-
duce an arbitrary operator /'’ with the requirement
that it be decomposable /"' =37 /1 .. We add
L” fimn, £) to both sides of (5.2) and put it in the form

af[”g(tn"‘t) =L i D+ X 2 L1 f iy, )

—Kzl”f(m}(ﬂ)t): (8- 1)

where / T=/°+ /7, The ordering parameter A is in-
troduced into the above. No claim is made of authority
of the particular orders assigned to the right-hand side
terms of (8. 1): It is justified a posteriori from the
structure of the nonlinear interaction terms. This
arbitrariness cannot be eliminated from the dynamic
consideration alone. Hence, herein lies the vulnerability
of present turbulence theories which must cope with a
strongly interacting many-body problem but with no
parameter to guide us in developing a systematic ap-
proximation. For A=1, (8.1) reduces to the original
problem (5. 2). The zeroth-order problem (A =0) is the
reference flow state. Since it is not known a priovi, we
do not seek a conventional perturbation expansion in
powers of . Rather, the aim is to choose the zeroth-
order problem in such a way that it can best approximate
the actual turbulence dynamics in a statistical sense.

Following Sec. 5, we derive a kinetic equation with
the diagonal fragments of O()\?)

Simm, 1)
ot

=/Tfm, 1)+ %}) mlf’ |m) exp(f Tt) f ) (m,0)
. (@, Joar amlg |myexply Tt =) om |17 |m)
Xf(m,('n,t")—L” f(,,.;(n,t))- (8.2)

Suppose that we wish to describe the actual turbulence
dynamics by the zeroth-order problem

Sl rpn, ).

Since / T is decomposable by definition, we see that
(8. 3) is readily amenable to solution, whereas the
original problem (5. 2) may not. In order for (8. 3) to
represent the actual turbulence dynamics, we must
require that the second and third terms of (8. 2), both
multiplied by A, vanish identically:

0=1x (‘z;} || f i, )

- (8.3)

+22 ({?} fotdt' (m[L’ |my exply T(t-t')] (m’ |L’|m>

Xf i ) = L7 Fra (s t)). (8.4)

In the first term, we have replaced exp(/ ™t)f,,.,(n, 0)
by f(.)(n, ) because they are related to each other by
the solution of (8. 3), Since the transition matrix does
not allow {m’}={m]}, the first term of (8.4) makes no
contribution. Therefore, the operator satisfying

L" fim(n, )= %;} f dat m|/’ |m’yexpl/ T(t - t)]
X |7 | fim (8 (8.5)
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assures fulfillment of (8.4). The zeroth-order problem
can thus approximate the acutal turbulence in that /”
describes certain of the nonlinear dynamics.

A. Turbulence dynamic equations
The introduction of (8. 5) into (8. 3) gives

*finn, 1) =L Fomln, 0+ 2 [ dt (" |m)

xexpl/ T(t - ) om' | [ 7 |m) frm, ).

This is identical to the lowest-order of (6. 4), if we
replace exp(/ °t) by exp(/ Tt). Consequently, the modal
energy equation derived from (8. 6) would be the same
as (7.1) except the double lines are replaced by bold
lines representing exp(/ [ 1):

(8.6)

alké:(t) =/ d""n.u<L°f<o;(n, t)+2f0' de
(Y72
XZ:;? MEAp .m. f(o)(n’ 9))-
(t-8) (8.7)

Hence, this should directly give the renormalized modal
energy equation (7. 17). The turbulent covariance and
averaged Green’s functions are defined respectively by
(7.16) and (7. 12) with the identification

Gy, ,» TV =€XD([,], 7). (8.8)

Next, the averaged Green’s equation is given by the
prescription

3Gy, (7, 1)
oT

=—/dm.uni,/3<ag(";,'“’T)>ni{£‘2 (a‘p(a’;:“ 2). @9

We note from (8. 8) that

Ml — iz Gl

For the evaluation of the right-hand side, consider the
identity

LT Fuy s D=L+ L)y 05 7).

(8.10)

(8.11)

Under the product hypothesis (6. 6), we integrate (8. 11)
over all action variables except 1, :

L Gy, 7

=Lz.ug(nk.u’ T)+ j:de E ? f dnv.hdnk-ma
? 1P

PA

(r-8)

X @My, 5 O)@(Mxoy,pr O) Gk, 5 6)- (8.12)
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After the final integration over 1, and 7,_,, we have
Lkr,‘u g(m,u, )

=[x GO,y +EQRT/LP D 2 f de

P Ao

x[g i35 ot Goa(T= 6, 6) Ugp, AT 6, 6)

:;Uy.i(f— 6’ 9) Gk-p,p(T" 69 8)]

1/2 a/ank,unk,“g(m,u, 6). (8.13)
Upon introducing (8. 13) into (8.9), we recover at once
the renormalized Green’s equation (7. 18).

Finally, (7.19) is recovered by a procedure similar
to that we used to derive (7. 11). Although /7 now in-
volves ny/2/an,, ni/? in addition to a/ank,mm both the
expansion of exp( L,f'. u 7) and partial integration can be
carried out just as in Sec. 7A. In this way, we have
rederived the SCF equations as the first-order perturba-
tion about a turbulent flow state but without summing
the laminar expansion terms. Conceptually, we can
extend the kinetic equation (8. 2) to higher orders in 2,
thereby including in the operator / 7 the dynamic effect
of arbitrarily complicated interactions. This, however,
does not seem to be a workable way of refining the
turbulence theory because such a series, even if we
find one, is likely to diverge. '’

B. Covariance equations

From the covariance definition, we can obtain two
kinds of covariance equations. For the first kind, we
differentiate (7. 16) with respect to 7:

ouU,, (T, t)/3T

= [ dn, /2 (8, Gk, INEE0M, 0 ) (8. 14)
Since it has the same form as (8.9), we can immediately
write down the equation for U, ,(7,¢) in 7 by replacing
G, .(0,1) in (7.18) by U, ,(6,%). The use of (8.14) is in
deriving the fluctuation—dissipation relation, which we
have already deduced by the direct term-by-term com-
parison of the covariance and averaged Green’s fun-
tions. Therefore, (8.14) provides no new information in
our theory. Without going into detail, we point out that
the autocorrelation equation of Balescu—Senatorski is
basically of this kind, although they have incorporated
the evolution of ¢(n,,,,t) by another kinetic equation.

Next, to derive the second kind of covariance equation,
we reintroduce into (7. 16) the factor

S dn,, 0, 1),
which is unity. Now the differentiation with respect to

t rather than 7 gives

aUk.u(T’ t)
ot

(p,v)%(k,u)

= [ dnni/2 G, i/ [0 Figy(m, 0)/31). (8. 15)

The introduction of (8. 6) into the above gives
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(567 + 2uk2> Uy, u(T, 2)
(B pz L
X{PEA e Gy, (T+E=86,00U, (t= 6,0 Uy, (t- 6, 6)

~ Bl s B LB U, (T+1-6,0)G,,(t—6,6)
X Uk-n,p(t - 9’ 6) - a)-#ll)l;::-v $k Dl#.: Uk,u.(T+ t- 9’ 9)

XU, ,(t-6,6)G - 6,0} (8.16)

k-p, n

We have used the identity (dropping u)

2
f dny i/ exp(L{ TIny/® 5= MPF

=- [ dnyni/?exp(/ I7)F,

where F is a function of fi,;. Note that (8. 16) is a trivial
generalization of (7.17). It evolves along the simul-
taneous-time argument just as (7.17). In the distribution
function formalism, all that we can do is to describe

the covariance evolution along the diagonal of the {—¢’
plane, whereas the relaxation in the off-diagonal is pre-
scribed by the fluctuation—dissipation relation. This is
the inherent limitation of the distribution function for-
mulation. In contradistinction, the DIA can evolve the
covariance in the entire /—¢’ plane by two statistical
equations, one in / and the other in ¢/. Since the modal
energy is the simultaneous-time limit of the covariance,
the moment formulation can provide more complete
statistical information than the distribution function for-
malism. In some applications, however, the one-time
nature of the distribution function formulation is a
blessing rather than a curse because it trades the ease
of computation for the loss of statistical information.

9. HERRING'S SELF-CONSISTENT-FIELD
APPROXIMATION

Herring’s SCFA also represents perturbation about a
turbulent flow field and hence is in spirit very similar
to the present perturbation theory. To comment on the
SCFA, we shall rederive (8. 6) by transcribing Herring’s
procedure to the triad-interaction representation in
action-angle variables. Again the Liouville equation
(5. 2) is the starting point. We propose to examine the
following kinetic equation:

f (1, t)/atzj: ar /. H(t" t’)f{m)(Tl; )

H
* 2 LA Y e (E =) F (0, ). (9.1)
Here, [ #(t-t') is an arbitrary, but decomposable
Liouville operator / #=7:% s/ , and the operator

Ve (E=F)Y==f Ht=#)6(m —m’) +/ °5(t ~1') 8(m - m’)

+m|f |mys(t—1) (9.2)

is defined so as to relate (9.1) with (5. 2). In parallel to
(8. 3), the aim is to describe the actual turbulence by
the kinetic equation of a simpler form
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affm,0/0t=["dr [ Kt~ t)FE(m, 1), (9.3)

By the superscript H, we are allowing for the possibility
that f {"m, may be different from the actual distribution
function at any stage of approximation. Associated with
(9. 3) is the Green’s equation

0g (mn, t = #)/0t= [0/ *(t - 0) g(y(n, 6= ) +5(t~ 1),
(9.4)
whose solution is
g[m}(ny t- t')
£ 8
=1+ [ a8 [ a0’ [ H6-&)gmin, 6 = ).

By treating the second term of (9. 1) as the inhomo-
geneous term, the formal solution becomes

(9.5)

$
f{m}(n’ t) =f{';¢}(11, t)+ (?} ,f; at' g{m)(n, t- t’)

X [ A8 Y (= ) s, 0. (9.6)

Now solve this by iteration
. .
f[,,.q(n,t)=f{,’.l.,(n,t)+(§)£ At g (M, t=1)

"
X [ A8y g (8 = O)f Fppn (1, 6)+ -oe.

The iterative expansion (9. 7) can be consolidated into a
closed form by using the auxiliary operator satisfying
a Dyson’s equation; however, such is superfluous be-
cause the leading terms are all we need explicitly for
the present purpose.

(9.7

The formulation thus far has been formalistic. To
initiate the SCFA, we apply ¥ (., (m|/'|m’) to the right
of (8.7):

{%}} (m 'L' tm'>f(m') (n, t)

={§} (m]/" ]m’)ff’mq(mt)“*‘{;)} {.‘?; fofdt' fof’ dae

X L1M7 ey Oy E= B ) e e (B = O) F g (1, 0) + +oe.

(9.8)

At this point in the perturbation theory, it is important -
to observe the following steps in the order to be stated.
First, we identify the right-hand side of (9. 8) with the
last term of (5. 2); hence we write

f tmy (0, 8)/0t = [ °f(a(n, £)=Ths of (9. 8). 9.9)

Secondly, we replace f,,; with f#, on the ground that
the two distributions must eventually be indistinguish-
able, if the perturbation scheme is expected to work:

AfE )/t =7 °ff (n, 1)

¢ ¢
=2 ol )y, 0+ 53 3, dr [ ae

XL |) Gy Oy = ) Y g gy (= OV f oy (1, 8) v

(9.10)

This second step should not preceed the first. That is,
if we had applied f,,, —f{, directly to (9. 8), it would
have resulted in cancellation of the two terms adjacent
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to the equality sign. Since the transition matrix

(m|/’ |m’) does not allow {m}={m’}, the first right-
hand side term of (9. 10) makes no contribution. Simi-
larly, only the (m’ |/’ |m”) 6(t—t') of |/, v Will contri-
bute to the last term of (9. 10):

3f s (. 0/ot = Flly )+ 5 [t m] L )

X gyt =) | |m) fH (n, ). (9.11)

Upon identifying g, ,(n, ¢ = ¢') with exp[/ (¢ - #)], (9.11)
agrees with (8. 6). We have thus demonstrated similarity
between Herring’s SCFA and the present perturbation
procedure.

10. STATIONARY TURBULENCE DYNAMICS

Let us examine the stationary behavior of (7. 17) and
(7. 18). Suppose that ¢(n,,,) has the stationary
distribution

DNy, =5, eXP(=7y ./, ). (10.1)

Since q,,, = f:d'ﬂx.uﬂx.ucp(m.u)’ it is the stationary value
of the modal energy, I, ,—~q,,, 6 as {— . It is well known
that (10. 1) is the steady solution of a Fokker—Planck
equation’
9¢

2 a
BT Yo gy (qk.u’?k.u e +’7k.u>‘?’v (10.2)

where w, , is the dynamic friction. The random process
cannot be Gaussian in action-angle variables; hence

(10. 2) is not the more familiar Gaussian Fokker—
Planck equation. Since / T is decomposable, the zeroth-
order problem (8. 3) can be written down for each (k, i)
(by dropping p)

3Ny, 1)/3t =/ LMy, 1) (10.3)
We shall consider here a particular operator
representation
2 G 1 J
T — —_— —_— - =1+ 1}l .
[ x =Wy [ank (Qt"?k o1 —H}k) 3 ( oM )] (10. 4)

Note that the Fokker—Planck operator of (10.2) appears
in the first parenthesis. On the other hand, we have
introduced the second parenthesis so as to expand /T in
terms of the associated Laguerre polynomials of order 1.
Although this choice is not unique, the expansion of

/< by the Laguerre polynomials of other orders will
lead to the same stationary dynamics. Formally, the
Green’s operator of (10. 3) is exp(/ T¢). Since the
Green’s operator enters into the covariance and aver-
aged Green’s functions, our immediate goal is to

derive a concrete representation for it.

To this end, we consider the eigenvalue problem?!8:?

LY d’rk(nk) =Wy Yy Ziirk(m), (10. 5)

which for the eigenvalues 7, =1, 2, 3, .- has the eigen-
functions

10 = BTt a exp(- D) () Py (1), 0.6y

where Lﬁk(x) are the associated Laguerre polynomials
of order 1. Here the associated Laguerre polynomials of
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order s are defined by differentiating the Laguerre
polynomials s times, L3(x)=d’L (x)/dx*, and satisfy?°

xd’L¥(x)/dx® + (s + 1 = x) dL¥(x)/dx + (v = s) L%(x) =0.

Associated with (10. 5) is the adjoint eigenvalue problem

Z Tk Jrk('nx)»z - Wy 7y Jrk(nt)’ (10.7)
where the adjoint operator is
~ 92 0
T — —_— 4+ - e
L = Wy [qknk ani (qk Th:) ant
1 dx
- =1+ 2. .
(1 . | (10.8)
The eigenfunctions of (10.7) are
- (e 1z e
zh,(n.)—( qk) er<q,) (10.9)

for the eigenvalues 7,=1, 2, 3,:--. Note that by, and $,k
form a set of biorthogonal (normalized) eigenfunctions

j: dny llirt(m) i,'k (nk) =0 (10. 10)

ey

Now the Green’s equation for (10. 3) is
ag("'lky e bt )/ot= Lfg(np N Y+ 5(77k - n'x)b(t -t
(10.11)

In terms of the biorthogonal eigenfunctions, we can
write down the solution

gyt =t)
= :271 exp{— wyry(t = 1)]4, (m) 3y, () (10.12)
Hence, the Green’s operator has the form
Gy, t = t’)=rkZ.:)1 exp[— wyry(t - )]
Xy, ) fo B, (). (10.13)

By using this operator, the covariance under (10. 1)
becomes

Uy(t - 6, 8)=q, exp[— w,(t ~ 0)], (10. 14)
and the averaged Green’s function reduces to
Gy(t = 8, 6) = expl— w,(t - )]. (10. 15)

As anticipated, (10.14) and (10. 15) satisfy the fluctua-
tion—dissipation relation. The phase~correlation func-
tion has the form exp[- Wyt = 6)], thereby representing
the solution of a Fokker—Planck equation.

Let us now introduce (10. 14) and (10. 15) into (7. 17)
and (7.18). First, carry out the 8 integration in (7. 17)
and let {—~. By noting I, ,/3t— 0 as t—~«, the modal
energy relation in isotropic form becomes

vkq(k) =Tk fA [ dapdapq

» (a(k, b, )q(p)g(k ~ p) - b(k, b, 9)g(k)q(k —P)>.
w(k) + w(p) + w(k - p)

(10. 16)

Following Sec. 7C, we have extended the isotropic re-
quirements to ¢, , =q(¥)/2 and w, , =w(k). Secondly,
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we perform the ¢ integration in (7. 18), and then inte-
grate the resulting equation in 7 over [0, ©]. The dy-
namic friction in isotropic form then becomes

b(k, b, q)q(k -'p) .
w(p) + w(k - p)

The pair (10. 16) and (10. 17) describes the relationship
among the triad modal energies in the stationary limit
of (7.17) and (7. 18). They agree in form with Herring’s
stationary SCFA* in that (10, 16) has the relaxation
factor [w(k) + w(p) + w(k - p)]"!, whereas (10.17) has a
slightly different one, [w(p)+ w(k-p)]-!. Although
Edwards® also derives a pair relation similar to (10. 16)
and (10. 17), his dynamic friction has the relaxation
factor [w(k) + w(p) + w(k ~ p)]™.

wk)=vk*+k [ [ dpdqpq (10.17)
A

11. CONCLUSIONS BY WAY OF A UNIFYING
OBSERVATION

The turbulence theories of Balescu—Senatorski® and
Herring® parallel the perturbation schemes of Wyld®
and Kraichnan' developed in the moment formulation. In
summary, the theories of Balescu—Senatorski and Wyld
involve the laminar perturbation and renormalization.

.On the other hand, both Herring and Kraichnan develop

perturbation about a reference flow state which is very
close to the actual turbulent field, thereby avoiding the
tedious renormalization. Two other theories of
Edwards® and Phythian, !® however, represent perturba-
tion about the Gaussian random process. Edwards’
theory belongs to the distribution function formalism,
and Phythian’s theory is based on the moment formula-
tion. In Table II, the three turbulence theories in each
formulation category are classified according to the
underlying perturbation schemes.

The reference flow state of Phythian’s theory is de-
scribed by the Langevin equation (see, for instance,
Ref. 21). Phythian was able to determine the dynamic
friction and diffusion coefficient (the variance of ex-
ternal random forces) in terms of the triad interactions,
thereby recovering the stationary DIA equations in fre-
quency domain. In Edwards’ theory, the reference flow
state is governed by the Fokker—Planck equation (see,
for instance, Ref. 22). Edwards derives one condition
relating both the dynamic friction and diffusion coef-
ficient with the triad interactions. He then splits this
condition into two parts: one for the dynamic friction and
the other for the diffusion coefficient. With this much
latitude allowed, Edwards’ theory cannot give the totally

TABLE II. Classification of turbulent theories.

Formulation Moment Distribution
function
Perturbation
About the laminar Wyld (1961) Balescu-

flow Senatorski (1970)
About a turbulent Kraichnan (1958) Herring (1965-66)
flow

About the Gaussian  Phythian (1969) Edwards (1964)

random process
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correct stationary dynamics in that the relaxation fac-
tor of (10.17) becomes erroneously replaced by

[w(k) + w(p) + w(k - p)11. Here the trouble is the one-
time nature of the distribution function formalism,
which impedes the simultaneous determination of the
dynamic friction and diffusijon coefficient. Since the
random process is not Gaussian in action-angle
variables, the present statistical mechanical formula-
tion cannot be used to investigate Edwards’ theory. We
must therefore go back to the triad-interaction rep-
resentation (2. 6) and start anew the theoretical formu-
lation but without having access to the elegant transition
matrix. We shall briefly sketch Edwards’ theory in
Appendix B, and show the predicament in determining
the dynamic friction and diffusion coefficient
simultaneously,
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APPENDIX A: THE PRODUCT HYPOTHESIS
Under the cycle approximation, the kinetic equation
(6. 4) becomes

Yial) s of i, 0)+2f as

220> o @8 (AD

1adyp

Consider the inviscid case. The first term drops out of
(A1) and the laminar exp(/ { , f) denoted by the double
line degenerates to the unit operator. Hence, the
inviscid kinetic equation becomes

af{o} (1?3 t)/at
@ Fio (,9). (42)

Let us solve this by iteration:
Fiar (s 1) = 0)+(£#/21)

xf{o)(na 0) + »ee. (AS)

Suppose that the product hypothesis is initially imposed,
f(o;(m 0)= Ty, <P(m,u, 0). Upon applying f(k,u)d'n to (A3),
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we find thatg(n,, ,,0) separates out from the factors I,
and I, . Thus, in the cycle approximation the single
mode distributiong(n, , t) will not induce statistical
interaction with other ¢’s, if they are statistically in-
dependent at the initial time.

APPENDIX B: EDWARDS' GENERALIZED-
RANDOM-PHASE APPROXIMATION

We shall briefly retrace the essential steps of
Edwards’ turbulence theory, thereby indicating the dif-
ficulty in simultaneously determining the dynamic fric-
tion and diffusion coefficient. Consider an abstraction
of the triad-interaction representation

dx,/dt + szxkzpz Pupa®o Xt T (B1)
Q
where x, denotes a suitable enumeration of v#(k) and
w*(k), and 7, is the random force for mode k. The sym-
metrized coupling coefficient 5»« is symmetric in p and
q, and ¢ps + Gpo+ Popp=0 assures the energy con-
servation. Now take arbitrary nonrandom function
R,(x,t) and random function s,(¢). After adding Rx,+ s,
to both sides of (B1), we put the resulting equation in
the form*®

dx,/dt=— wkxk-kkk—!-kp% Pupe¥sXq T AR K= 5, (B2)
where
w, =V +R,, (B3)
n,=7,+ S, (B4)

We have introduced the ordering parameter x into (B2)
[see Eq. (8.1)].

The reference flow state (A =0) is the Langevin
equation

dx,/dt = — w5, + hy (B5)

‘Since the stochastic solution of (B5) is completely

known under the Gaussian #,, the objective is to deter-
mine w, and the variance of %, in such a way that (B5)
can best approximate (B1) in a statistical sense. This is
Phythian’s self-consistent perturbation theory based on
the moment formulation, which yields exactly the
stationary DIA equations in frequency domain.

Under the Gaussian 4, the distribution function F(x)
satisfies the Fokker—Planck equation
d

oF 0
T E ———(w,;ck+dk-5;;>F—0,

S 5 (B6)

where d, is the diffusion coefficient (2d, is the variance
of k). On the other hand, the Liouville equation for the
phase space points which evolve according to (B5) is

oF

a
—aT—z:/'é}:(wkxk—hk)F:O.

(B7)
Comparing (B6) and (B7), we can infer the correspon-
dence between the forcing and equivalent diffusion terms:

3 3 0
T a,

o s G (B8)

Edwards’ theory begins with the Liouville equation for
the phase space points evolving according to (B2):

oF 2 0 —
2 " Z; '5}'; {(‘*’kxh+du “3}:) ‘7‘:42 PrpaXs¥q
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a9
-2 (kak‘f-sk a)} F=0. (B9)
In the above we have invoked another correspondence in
analogy to (B8):
a a a

-—SkF"—'—-—Skéz:

T T F, (B10)

where 25, is the variance of s,. Since 7, and s, are
statistically independent, we find from (B4) that

d,=e,+5, (B11)
where 2¢, is the variance of 7,.

For the steady-state 0F/0t=0, we look for a series
solution®+24

F=FC+AF*+ \2F% + ..., (B12)
The zeroth-order F° has the solution
Flx)=1 flx)= 1 (21q,)"/2exp(~x,/2q,).  (B13)

Here the modal energy q,= j: dx,x,?f(x,) is related to
the ratio

qk:dk/wk' (B14)
The first-order F! becomes
Fl(x)=k;q Proa s XX % o Uppq FO(), (B15)

where Q,, =w,+ w,+ w, The solution of F? is compli-
cated because of the proliferation of product terms when
3/8%, ®p ¥ X, Operates twice on F°. Considering only the
terms multiplied by (1/4w,)H,(x,/V2q,), where H, is the
Hermite polynomial of order 2, we have

F=3 (Ra-5+2 D Bup? 50 40,
'
A B Bpu it ) (1/4)

tz(xk/‘/—ZFk)Fo(x)"'"‘, (B16)

where the three dots represent terms involving the co-
efficients different from (1/4w,) Hx(x,/V2q,).

Since we shall require the zeroth-order problem to
share the same modal energy with the actual turbulent
flow, it is necessary that

XfdxxﬁFl(x)+A"’fdxxiF2(x)=0. (B17)

The first integral is zero due to the antisymmetry. We
must therefore demand that

Rk_skql-zl+ 2 PE (?ﬁ»q ? Q;z,clsqq;;l 4,49,
' q

+ 4»25 $m$m Qipe 4,=0. (B18)
Note that (B18) is not sufficient for (B17) because the
additional terms denoted by the three dots in (B16) do
not all drop out (in contrast to Edwards’ claim). At any
rate, let us accept (B18) as the unique condition. This
is the first ambiguity of Edwards’ theory. By physical
arguments, Edwards breaks up (B18) into two relations:

R,=-4 2 $k#q$bqk Q;!l’qqa’ (B19)

Piq
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S$v=2 21 (Bupe)’ Va0 4 (B20)
' q

This is the second ambiguity. The dynamic friction (B3)

then becomes

wkzuk2—4’E Brrg Prardo/(Wpt Wyt ). (B21)
r q

In view of (B11) and (B14), the modal energy relation
becomes

vkiq, = e, + 2922 (Prr)* 40/ (Wp+ @, + )

+4:>Ea Prpe Poar s/ (Wp+ W, + ). (B22)

Compare these with (10. 16) and (10. 17). The modal
energy relation (B22) agrees in form with (10. 16); how-
ever, the dynamic friction (B21) has a relaxation factor
(w,+w,+ w )™ apparently different from (10. 17). The
simultaneous determination of R, and S, is not possible
because of the one-time nature of the distribution func-
tion formalism. We have indicated how the two-time
formulation can rectify Edwards’ theory, thereby
yielding the correct relaxation factors for both the
dynamic friction and diffusion coefficient. Since our
argument is heuristic, we shall not present here the
detail which may be found in the original manuscript.
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Quasiperiodic pointwise solutions of the periodic,
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For Hamiltonians periodic in time, we obtain under certain assumptions a condition which is
necessary and sufficient for the existence of quasiperiodic pointwise solutions to the Schridinger
equation. Orthonormality and completeness of these functions in L2(R ") are investigated, and the
time-displacement operator is considered as a sum of quasiperiodic terms.

1. INTRODUCTION

Despite its antiquity, the periodic, time-dependent

Schrddinger equation
iZy=HE, HE+m=HE) (L.1)

remains a largely unsolved problem in quantum me-
chanics. It is also an important one, for it represents
in particular the interaction of a system of quantum
mechanical particles with classical monochromatic
radiation. One question of interest is whether there are
solutions to the equation which are quasiperiodic in
form, that is, solutions which can be written as

P(&) =f() exp(-iad), flt+7)=£(), (1.2)

where f(f) is periodic in time and « is a real constant.
Such functions would correspond to stable physical be-
havior and provide a counterpart to the stationary states
of time-independent theory.

In this work we shall begin a function-analytic investi-
gation of quasiperiodic solutions to the Schrodinger
equation by an approach based on a spectral operator
acting in L}(R"X[0, 7]). Under certain assumptions we
obtain a criterion which is both necessary and sufficient
for the existence of quasiperiodic solutions in LZ(R"). In
addition, we investigate orthonormality and complete-
ness of these solutions as well as the expression of the
time-displacement operator as a sum of quasiperiodic
terms.

Strong motivation for the existence of quasiperiodic
solutions is provided by Floquet’s theorem! which states
that, for an n-dimensional homogeneous system of
ordinary linear differential equations

iLx=Y(Ox, Y(t+7=Y0), (1.3)
the solution may be written as
x=P(t) exp(idt)c, P+ 7=P(), (1. 4)

where P(#) is a periodic matrix, c is an arbitrary con-
stant vector, and J is a constant matrix in Jordan form.
When Y(¢) is Hermitian, J is diagonal and real, and the
components of (1.4) are given by
n

%;=22 bia(t) explTiHCs. (1.5)
We may draw an analogy between the Schrédinger equa-
tion and the Floquet system by, for example, expanding
the wavefunction in a coordinate basis set and noting
that the time-~dependent coefficients form a system of
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type (1. 3) with Hermitian Y(!). The only difference is
that the dimension is now infinite, and for this reason
we cannot always expect quasiperiodic solutions in the
Hilbert space of interest. For example, in the simple
case of a free particle Hamiltonian there are no quasi-
periodic solutions of (1.1) in L2(R%). This points out the
need for a condition which is necessary as well as
sufficient,

Several other authors?—® have noted the relevance of
quasiperiodic solutions to the Schrédinger equation and
have developed perturbation schemes for obtaining them,
Although the convergence of these series and, indeed,
the existence of such solutions is in question, Young
et al.? have pointed out that they may have asymptotic
validity with respect to a perturbation parameter,

The spectral operator upon which we base our ap-
proach is introduced in the following section for Hamil-
tonians with regular coefficients and for those with
many-body Coulombic singularities. The next three
sections are largely preparatory to the existence the-
orems in Sec. 6, although the orthonormality and com-
pleteness theorems in Sec. 4 are of additional interest.
In Sec. 7 the time-displacement operator is considered
first as a sum of quasiperiodic terms and then in a more
compact form,

2. THE SCHRODINGER OPERATOR

Assume for a moment that there exists a quasi-
periodic function

() = exp(= i) &(8), &+ =¢(@)

which satisfies the Schrédinger equation (1.1) in a
pointwise sense. Then the periodic function ¢(f) satisfies
the equation

2.1)

A= (10 - )50 =250, 2.2)

so £(?) is an eigenfunction of A(#) with real eigenvalue.
It is well known that if a linear operator in a separable
Hilbert space is self-adjoint, then a complete set of
eigenfunctions and eigenpackets of the operator exists
in the space. ’ This suggests, then, that we attempt to
make A(f) into a self-adjoint operator, the existence of
whose eigenfunctions will imply the existence of quasi-
periodic solutions.

First we choose a suitable Hilbert space. Quantum
mechanically we shall ultimately be interested in solu-
tions in L%(R"™), so this must be a subspace. Periodicity
in the ¢ variable suggests we choose L%(R"x[0, 7). ¢
Norms and scalar products with subscripts x, £, and x¢

Copyright © 1974 American Institute of Physics 1587
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refer respectively to L*(R™, L*0, 7], and L3(R"X[0, 1]).
Norms and scalar products without a subscript refer to
LYR").

Now we define the Schr8dinger operators more pre-
cisely. Reasons for various qualifications are given
subsequently. The operator A; in D(A4,) below is charac-
terized by regular coefficients.

n

0 0 . ¢ [}
> a;,(x, t) ax;z;)1 (b;(x, t)'é;;+5;-jbg(x, t))

A
1 Jr k=l 8%

i
+q(x, t)-zat , {2.3)

where
(@) au,b;,q real, ay=a,;
(B) ay,b;€ CUOUR™X[0, 7)), gqe C[R™X[0, 1]);
&) ay by, q satisty glx, 7)=g(x,0).
C"”‘(R"x[(), 7)) is the set of all functions on R"X[0, 7]
with continuous coordinate derivatives of /th order and
a continuous time derivative of mth order. When ! is

equal to m, a single superscript is used. A subscript of
zero denotes compact support in R*x[0, 7]. I
L={uluc CyR"*X[0, 7)), ulx, D=ulx,0)} (2.4)
and
L={ulue CH(R"x[0, 7)), ulx, 1) =ulx,0)}, (2.5)

then D, is defined to be any linear subspace of L*(R"
%{0, 7]) such that
(@) LcD,Ch, (2.6)
(B) if ue D,, then, for all integers =, u exp{2mint/ 7]
eD,.
Clearly, I;, I, themselves satisfy (2, 68). D, is defined
by the expression
Dy={u|uec CEYR"X[0, 7)), ulx, D =ulx,0),
u, A LA R" %[0, 1)} 2.7
The domain D(A,) is then taken to be either D, or D,.

The operator A, in D{4,) below allows for the pres-
ence of many-body Coulombic potentials. We consider
m particles and denote the coordinate vector of the kth
particle by 7,. Let {a%}, wherej=1,...,m and k
=1,...,1, be a set of real numbers such that for fixed
% the numbers {a’} are not all zero. Let {6*}, where

k=1,...,1, be a set of real three-dimensional vectors
and {c,}, where k=1,...,1, be a set of real numbers.
Define

Ro=Z,a%,+ " (2.8)
and

V.=Z.0/ |Rel. 2.9)
The operator A, is defined by

A2 5A1+Vc, (2. 10)

where A, is given by (2. 3) with n=3m and V_ is given by
(2. 9). The domain D(4,) is taken to be D,, which is
given by (2. 6) with n=3m, For future reference we de-

J. Math. Phys., Vol. 15, No. 9, September 1974

Joyce M. Okuniewicz: Quasiperiodic pointwise solutions

1588

fine R(™ to be the set of points in R*" at which none of
the vectors R, is zero. The complement of this set is
denoted by (R3™)’.

The precise nature of any singular coefficients in the
Schridinger operator will not be relevant to all points of
investigation below. In such instances the subscript is
omitted, and the operator A refers to A in D(4,) with
the regularity hypotheses (2. 38) weakened in some
manner here unspecified.

The operators A;, A, are formally self-adjoint, The
domains D(A,), D{(4,), as they include I;, are dense in
L*R"x[0, 7]). ® The boundary condition x(x, 7) =u(x, 0) is
a stepping stone to periodicity, and, further, a condi-
tion of this sort is needed to insure symmetry. Alterna-
tively we could require

(2.11)

where « is any real number. However, any choice of

u(x, 7) = expEalulx, 0),

‘a#0 will translate the eigenfunctions and eigenvalues in

such a way that the final wavefunctions are independent
of . It is convenient to include I; in D(A), as the mem-
bers of I; are often used to establish regularity of eigen-
functions. The requirement (2. 68) is necessary to the
development in Sec. 4. The requirement (2. 6a) facili-
tates necessity proofs in Sec. 6.

Note that, by a change of scale

t'=t/1, 2.12)
we may equivalently consider the operator
A =A@ =BE -1 5%; @.13)

in the space L*(R"x[0,1]). Therefore, the choice of
space need not depend on the parameter 7, provided 7
is neither zero nor infinity.

3. ESSENTIAL SELF-ADJOINTNESS OF THE
SCHRODINGER OPERATOR

Although we shall not establish essential self-ad-
jointness of the Schridinger operator in any generality,
we shall demonstrate this property for the special case
in which the time-dependent potential associated with
the operator A, is bounded. If the Coulombic term V, is
given by (2.9), we define

_ & .3 . D
Ay =;§1 a,k(z—a;; - b,(x)) (z-aTk - bk(x))+ Ve+ Vi(x)
+ Volx, t)—i—q' 3.1)

at
under the conditions

(@) the numbers a;, form a real, positive definite,
symmetric, constant matrix;

(8) {by(x)}< C'(R®™) are real and independent of ;

(y) Vye C'R®™) is real and independent of ¢; there
exist M and 0 < 8<2 such that | V| < Mix|5

(8) V,e CYR*™x[0, 7)) is real and bounded; V4(7)
= V5(0),
and take D(Ay) = 1.

Theovem 3. 1: The Schrédinger operator Ay, in I, is
essentially self-adjoint.
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Proof: The essential self-adjointness of Ay~ V,
+18/9t in Cy(R*™) is a special case of a theorem due to
Tkebe and Kato. %! It is well known that the operator
- 19/0t is essentially self-adjoint in the subspace

D, ={w(®)|we C[0, 7]; w(1)=w(0)}

of L?[0, 7]. Essential self-adjointness of Ay — V; in
M, N
D= {“("’ t)|u= 1%1 C 130 5wy; V5 € CT(R®™);

wy € Dy; all finite integers M,N

therefore follows from a theorem of Reed and Simon!?
and the natural isomorphism between L%(R*" %[0, 7]) and
the tensor product space L(R*™® L¥[0, 7]. 1

It is evident that D,,C I;, so Ayy— V, in I; is an exten-
sion of Ayy~ V, in D,,. As the closure of an essentially
self-adjoint operator contains every symmetric exten-
sion of the operator, * 4,,- V, in I, is essentially self-
adjoint if it is symmetric. It follows from the Gauss
integral theorem!® that Ay, — V, in I, is symmetric.
Finally, as an essentially self-adjoint operator retains
this property when a real and bounded function is add-
ed, !® the theorem is proved.

4. ORTHONORMALITY AND COMPLETENESS
OF EIGENFUNCTIONS IN L2(Rn)

The Schrédinger operator is here assumed to be
essentially self-adjoint. Its closure A is then self-
adjoint, and we shall work within the closure. Recall
that A has an orthonormal system of eigenfunctions if it
has discrete spectrum, and this system is complete in
LYR"x[0, 7)) if and only if its spectrum is purely dis-
crete. We investigate similar eigenfunction properties
in L*(R"). Further characterization is needed, as stated
in the following lemma. Define

(4.1)

Lemma 4.1: If ¢ is an eigenfunction of A with eigen-
value A, then, for any integer n, exp(inwf)¢ is an eigen-
function of A with eigenvalue X +nw. The orthonormal
eigenfunctions of A may be partitioned into disjoint sets
Sy ={exp(inwt)y;}, S,={explinwt)dy},---.

Proof:. Let {uk} be a Cauchy sequence in the domain of
A which converges to ¢. Then, for each n,
{exp(inwt)u,} is a Cauchy sequence in D(A) which con-
verges to exp(inwt)¢. We have

w=2n/7

A exp(inwt)p = }‘i‘lllA exp(inwt)u, = llzim exp(tnwt) (A +nw)u,

= (A +nw) exp(inwt) @, (4.2)
which establishes the first assertion.

Choose a normalized eigenfunction ¢, of A. The eigen-
functions exp(inw?)y; all belong to different eigenvalues
of A, so the members of S; are orthonormal. Choose
another normalized eigenfunction ¥, which is orthogonal
to all members of S;. From the relation

(exp(ikwt)}y, exp(Eiwl)ds)ss= (explilk - Hwt]dy, Pp)xe=0
(4.3)
we see the members of S, S, are all mutually orthogon-
al, and thus to sets Sy, S, are mutually disjoint. Con-
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tinuing in this way we obtain the desired partition,
Notice that degeneracy in the point spectrum of A causes
no difficulty. However, in the degenerate case the eigen-
functions of A are not determined uniquely, so the parti-
tion is not unique.

Now choose one, and only one, member of each set
S;, multiply by 1/J 1, and denote this new collection by

JE{;{}. (4.4)

Due to different choices of # in the sets S,, and, if
applicable, degeneracy in the point spectrum of A, the
set J is not unique. We consider any particular choice
to have been made.

Theovem 4.1: For almost every fixed ¢ on [0, 7] the
members of J form an orthonormal system in L*(R").

Pyroof: The orthogonality relation between elements of
any particular set S; is

(exp@kw?) Py, exp(Elwt)P; )y s = 8y, (4. 5)
which may be written as
147 [, exp(- inwt) || ¢, | 2dt= 8,0y . (4.6)

Il éfll,z, is a function of #, and the quantities on the left of
(4. 6) are its Fourier coefficients. Therefore | §jll,2, may
be written as

ler2=1+90)

almost everywhere in £, The function y(f) is defined
by (4.7) and the requirement

4.7

(,9);=0 (4.8)

for every u e L?[0, 7. We show y(¢) is zero almost
everywhere. As ¢;e LY(R"X[0, 7)), ll¢;ll%, and therefore
y(#), is measurable. We define a function a(f) by

= 1, y()=0
a(t)"{y(t)/ly(t)l, y(@)#0 .

As y(?) is measurable, «(f) is also measurable. !’ Mea-
surability of ¢’(f), together with the fact that «(#) has
unit magnitude, implies ¢ L*[0, 7]. Therefore, from
(4. 8) we find that

0=(a,9),= [, [y®|at,
so y(?) is zero almost everywhere.

4.9)

(4.10)

The orthogonality relation between elements of any
two different sets S;, S; may be written as

S, exp(= inwi)(g;, &) dt=0. (4.11)

In similar fashion, ({;, &), is shown to be zero almost
everywhere in 7, and the theorem is proved.

Theorem 4. 2: The system J={¢,;} is complete in L*(R")
for almost all ¢ if and only if the spectrum of A is purely
discrete,

Proof: Purely discrete spectrum is equivalent to com-
pleteness of the eigenfunction system {exp (fnwt) g,.} in
LYR"x[0, 7). If {exp(inwt)t,} is complete in L2(R"

x[0, 7]), completeness of {¢,} in L*(R") for almost all ¢
follows from this and the fact that L?(R" is a subspace
of L3R"X[0, 7]). Next assume {Z;} is complete in L%(R")
for almost all £, If {y,(x)} is a complete orthonormal
system in L%(R", then it follows that
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X5 (%) = Zp(Ers X5)xln (4.12)

almost everywhere in x for almost all £, Also, the
functions

exp(inwl)y; = exp(inwt)Z (&, X5)xEs (4.13)
are complete in L%(R"X[0, 7]). Consider y< L*(R"x[0, 7))
orthogonal to the set {exp(inw?)¢,}. We have

[ dtexplinwt)(¥, t,),=0.

Completeness of {exp(inw?)} in L0, 7] implies (¥, ¢,), is
zero almost everywhere in ¢, Consequer;tly, the sum

5™ (1) = T, exp (i, £, (6nr X, (4.15)

is zero almost everywhere in £ and thus we find that

(4.14)

[ dtsmi ()= [ dtexplinwt)Z, [ ¥* (&, X;),L, dx=0.
(4.16)

Now, that ¢ € L2(R"x [0, 7]) implies that y € L?(R") for
almost all /. Further, by assumption, the sequence of
partial sums corresponding to (4.12) converges to x; in
L2(R™) for almost all ¢, Therefore, by continuity of the
scalar product in L?(R"), we may interchange the order
of summation and integration over x in (4.16) for al-
most all ¢, Considering the time integral in (4.16), we
may do so for all ¢, Therefore it follows that

@, exp (inwt)x,),, = 0. @.17)

Completeness of {exp(inwt)x;} implies ¢ is the zero
element, which in turn implies {exp (inwt)t,;} is complete
in L3(R"x[0, 7]).

It is evident that a further property is needed to
establish orthonormality in L3(R") for all . As we shall
later be interested in eigenfunctions, if any, which are
pointwise continuous, we see what can be said with this
hypothesis. The following lemma shows it is sufficient
to guarantee boundedness of the L*(R") norm.

Lemma 4.2: Assume that, for every €0, 7], the
members of {gj} are continuous in ¢ at every x €R".
Then, for every t<([0,7], ¢; is an element of L*(R") and
the inequality |(¢;,¢,),! <1 is satisfied.

Pyoof: Let M, be the set of values of ¢ for which
|]§J.||x¢1. As M, is of measure zero and ¢ is continuous
in ¢, for each £€[0, 7] we can find a sequence u/
= | g(x, ¢,)1* such that u}—~ | ¢,(x, )1? for every xc R",
and t,¢ M;. Every member of this sequence is positive
and measurable, so by Fatou’s lemma, 18

S Lim inf u dx < liminf Jon e dx, (4.18)
we have
Jan 16,06, 8)[2dx < 1. (4.19)

Therefore ¢, and |¢,| are elements of L2(R") and we
may use the Schwartz inequality in L2?(R") to conclude
that

1€55 8] < [ 16 8 [ e < g L] 6] < 1.

Therefore the lemma is proved.

4.20)

It is well known that, alone, pointwise continuity of
I'¢, 12 is insufficient to guarantee continuity of /¢;[12 in ¢.
However, we have also the constancy of ||¢||2 for almost
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all ¢ and the derivative results of Lemma 4.2. Un-
fortunately, this additional information remains insuffi-
cient to establish orthonormality, as shown by the fol-
lowing counterexample. ! The functions

t
Vnl®, 8) = TTTagn T2 Gy i 72 Halx?) exp(- tx?/2),  (4.21)
where //,(x#*) are the Hermite polynomials
Hale) = (= 1" exp()) o exp(- 29), (4.22)

are infinitely differentiable. They form an orthonormal
system in L?(R!) when f is unequal to zero, but their
norms are zero at the latter point.

The need for a further property to establish orthonor-
mality in L?(R™, which stems directly from use of the
space L}(R"x[0, 7]), is a weak point in this formulation,
It is unlikely that, without a complete reformulation of
the problem, a criterion can be proposed which is better
than the old standard of uniform convergence,

Theorvem 4.3: Assume that, for every j, ¢; is an ele-
ment of C%(R"X[0, 7]) and the integral || ;|| converges
uniformly in £ on [0, 7). Then {¢;} is an orthonormal
system in L%(R") for every ¢ on [0, 7]. Also, the mem-
bers of {g,} are strongly continuous functions of ¢ with
respect to the L2(R") norm. That is, given ¢>0, there
exists 0; such that

l[t—t] <8;= || g; - &) | .<e

Proof: It is well known? that these conditions are sui-
ficient to insure continuity of || £;(#)II2 on [0, 7]. As [0, 7]
is compact, the resultant uniform continuity, together
with the implication of Theorem 4.1 that || £;(?)|, is unity
on a dense subset, implies || £;(?)l, is unity everywhere
on [0, 7].

Proof is similar for the scalar product, except we
must show the integral (¢;, &), converges uniformly on
[0, 7]. Consider the one-dimensional case. By Lemma
4.2, &) is an element of L¥(R!) for every t. I Nisa
positive real number, this implies &;(f) € L}(N, ) for
every t. Therefore, we may use the Schwartz inequality
in L%(N, =) to show that

| /5 ergaax] < (7|6 P ant/?(fy | &l ant 2 (4.23)

A similar estimate holds for the interval (- «, - N).
These estimates, together with uniform convergence of
1,112 and || &ll%, imply uniform convergence of (£;, &)y
Generalization to higher dimensions is obvious, The
statement of strong continuity follows from similar
considerations.

Just as pointwise continuity of the members of {{,},
combined with Theorem 4.1, is insufficient to guarantee
orthonormality, it is evident that the strong continuity
of Theorem 4,3, combined with Theorem 4.2, does not
imply completeness. We do not expect that there is any
additional internal criterion implying the latter prop-
erty which is not essentially equivalent to the statement
of completeness itself.

5. THE BOUNDARY CONDITION

As the boundary, that is the set of points (x,?) € [R"
x0], {x,f)e[R"X 1], is a set of measure zero, it is clear
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that additional properties are required to show eigen-
functions of A satisfy the boundary condition

(5.1)

As before, we shall be interested in continuous eigen-
functions, and shall assume a degree of continuity con-
sistent with the problem. Cases in which the Hamilton-
ian is discontinuous must be treated according to the
nature and distribution of the discontinuities present.

ulx, 7 =ulx,0).

Theovem 5.1: Assume Z1 is symmetric and its eigen-
functions are members of C%!(R"X[0, 7]). Then these
eigenfunctions satisfy the boundary condition (5. 1) at
every xc R",

Proof: Let x*=(x{,...,%;) be an arbitrary point in
R" and y>0 be a fixed positive real number. Define

Vs[xf‘— 77xf+7]x' : -X[x,‘,"—'y,x:+y]><[0, T]

=V, x[o, 7). (5.2)
By hypothesis, I;C D(A;). Let  be an arbitrary element
of I; with compact support in V and ¢; be an eigenfunc-
tion of A,. It is easy to see from the Gauss integral
theorem!® that

(Hlu; é}):nct——_ (u:ngj)xb (5- 3)

where H;=A, +i3/3t. Symmetry of A, in D(A,) and (5. 3)
imply that

f @
0=(Au, §)xe— @, A8y n =lf 57 @*Ey) axat. (5.4)
\4
Again using the theorem of Gauss, we find that
anu*(x, 0)[¢;(x, D = &(x,0)]dx=0. (5.5)

Now, the members of I; with compact support in V,
evaluated at £=0, are dense in L?(V,). The function
[¢5(x, T = ¢;(x,0)], being continuous on the compact set
V,, is a member of L*(V,). As, from (5. 5), this func-
tion is orthogonal to a dense subset, it must be zero for
almost all x€ V,. As [¢;(x, 7) - ¢;(x,0)] is in fact uni-
formly continuous on V,, it must be zero for every

x € V,, and in particular for the point x*. As x® was
arbitrary, the theorem is proved.

Theorem 5.2: Assume A, is symmetric and its eigen-
functions are members of C%1(R¥™ %[0, 7]) and C'(R®™
x[0, 7]). Then these eigenfunctions satisfy the boundary
condition (5. 1) at every x € R*™,

Proof: Let x* be an arbitrary fixed point in Ri’". Then
we can find y> 0 and sets V, V, such that V, is disjoint
from (R™)’. Therefore the proof of Theorem 5.1 ap-
plies, and the boundary condition is satisfied except
perhaps on (R¥™)’,

Clearly R3™ is dense in R3", so for arbitrary fixed
%< (R3™)’ we can find a sequence {x,;C R3™ such that
x,—~ x5 As the function g(x) =[g,(x, 7) - ¢;(x,0)], where
¢,(x,?) is an eigenfunction of 4,, is continuous on R,

for arbitrary e we can fine N(€) such that
n>N(e) = |glx,) - g(x%)| <e. (5.6)

As g(x,) is zero for every n, we conclude that the limit
£(x®) is also zero, and the theorem is proved.
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6. QUASIPERIODIC POINTWISE SOLUTIONS

In this section we find a criterion which is necessary
and sufficient for the existence of quasiperiodic solu-
tions to the Schrddinger equation in L*(R". This cri-
terion is dependent on two requirements. The first of
these, essential self-adjointness of the Schrddinger
operator, was established in Sec. 3 for a limited class
of problems. The second requirement, regularity of the
eigenfunctions of that operator, will not be investigated
here. However, it is well to point out that the corre-
sponding time-independent problem has received much
attention, 222 and results of that work lead us to expect
that the regularity hypotheses made here can be shown
to be satisfied. We also note that a typical regularity
proof neither establishes nor requires the existence of
eigenfunctions to have been previously established. The
requirement of eigenfunction regularity is not in fact
needed for the necessity part of our theorem,

By a pointwise solution to the Schrédinger equation
Aq$=0 is meant a function which is a member of C%!(R"
XR!) and satisfies the equation in the usual sense. For
the equation A,¥=0 we mean instead that this solution
is a member of CH!(R3™XR!) and C*(R*™xRY).

One final comment is in order. It would be desirable
in the following theorem to replace the statement that the
L2(R™ norm of the quasiperiodic function is bounded in
time with the statement that it is constant in time. From
Sec. 4 it is clear that this is impossible without addi-
tional information, However, the theorem can be stated
in this form if, for example, the hypotheses of Theorem
4.3 are satisfied.

Theorem 6.1: Assume the Schrddinger operator A4, is
essentially self-adjoint and the eigenfunctions of its
closure, if any exist, are members of C*!(R"x[0, 7]).
Then, in order that the corresponding Schrédinger equa-
tion have quasiperiodic pointwise solutions whose L%(R™
norm is bounded in time, it is necessary and sufficient
that the point spectrum of K1 not be empty.

Proof: Assume the point spectrum of Zi is not empty,
and let ¢, be an eigenfunction of 4, with eigenvalue Aj.
As ¢;e CHY(R"x[0, 7]), we conclude that the function g,
= ¢; exp(-i);f) is a pointwise solution of the equation A%
=0 when t€ [0, 7]. Define an extension of ¥; to the
interval [1,27] by

P;=exp(— i) g;(2 = 1),

TSE<2T, (6.1)

and let #'=f~ 7. Then ¥, satisfies
A@)3;(8) = Ayt + ) exp[—ix; (¢ + 1)]&; ()
= exp(—ix; T A (#) (")

=0 (6. 2)

on that interval. By Theorem 5.1 the function &;
satisfies &;(7)=£;(0) on R", so ¥; is continuous when ¢= 7.
Further, the relation

S6®| == ilH (D -y
t=T

=~ i[H;(0) - 2;]¢,(0) (6. 3)
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0
- _a-Z gj(t) ¢=0
shows that ¥; has a continuous first time derivative
when ¢= 7. Therefore, if we define a function ¥; on
R"XR! by

P (8) =exp(— iN) G5t —nT), nT<i<(n+1l)7, (6.4)

it follows that this quasiperiodic function is a member
of C%#1(R"xR') and a pointwise solution of the Schré-
dinger equation on its domain. By Lemma 4.2 ¢y is a
member of L%(R" and its norm there, which is constant
for almost all /, is bounded in time by that constant,.
Therefore, sufficiency of the condition is proved.

Now assume ¥ is a pointwise quasiperiodic solution of
A$p=0. Then we may write y=exp(-iM)¢, where ¢ is
periodic in time and a member of C%}(R"XR?), If ¢,
denotes the restriction of ¢ to R*x[0, 7], then &,
satisfies

Aty =1L,
and
&(1) = £,(0). (6.6)

As |||, is assumed bounded in time it follows that &,
€ L}(R"x[0, 7]) and, from (6.5), A,¢,& LER"X[0, 7]).

If £, € D(4,), it follows from this and (6. 5) that ¢, is
an eigenfunction of 4,, and hence the point spectrum of
A, is not empty. If D(A,)=D,, it follows from above that
¢,€ D(A;), and thus ¢, D(A,).

If D(A,)=D,, let D) be the set of all finite linear com-
binations of members of D, with &,. As &,, A;¢,€ LE2(R"
x[0, 7)), the operator A, in D/, is an extension of 4, in
D,. We show it is a symmetric extension. Evidently the
equality (Ag,, &), = (&, AL,),,; follows from (6. 5). Now
consider the quantity

(6.5)

Q = (Aiu; g'r xt (u’Al gr):n! (6- 7)
for arbitrary fixed uc D,. As both u, ¢, satisfy the
boundary condition (6. 6), it is easy to show by the Gauss
integral theorem!® that Q is zero so A, in D/, is sym~-
metric. But, as A, in D, is essentially self-adjoint,

A, has no proper symmetric extensions* and so ¢,

€ D(4;). Therefore the theorem is proved.

In the many-body Coulomb problem a smallness condi-
tion on the first derivatives is needed to establish neces-
sity, so we split the theorem into two parts. We say a
function g e CI °(R3" %[0, 7]) satisfies condition (o) if, for
each compact subset Z of R3” %[0, 7], there exist num-
bers F,=0, where k=1,...,l+1, and 0 <B<2 such that

_a£<1 F

ox;| Wi lR,|B

+Fh1 (6. 8)

for all x,tc Zn (R¥" %[0, 7]). This is a reasonable con-
dition in light of the form of the Coulombic singularity.
Alternative smallness conditions would also allow our
proof to succeed.

Theovem 6, 2a: Assume the Schrddinger operator A,
is essentially self-adjoint, the point spectrum of A, is

not empty, and the eigenfunctions. of Zz are members of
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CHY(R3™x[0, 7]) and C*R*™X[0, 7]). Then the corre-
sponding Schrddinger equation has quasiperiodic point-
wise solutions whose L2(R%™) norm is bounded in time,

Proof: This is analogous to the sufficiency proof of
Theorem 6.1, except Theorem 5. 2 is used in place of
Theorem 5.1,

Theovem 6.2b: Assume the Schridinger operator A,
is essentially self-adjoint and the corresponding Schro-
dinger equation has a quasiperiodic pointwise solution
which satisfies condition (o) and whose Lz(R”"Q norm is
bounded in time, Then the point spectrum of A, is not
empty.

Proof: The proof is analogous to the demonstration of
necessity in Theorem 6. 1 except we must show, for
arbitrary u< D,, that the quantity

Q = (Azus g'r % (u7A2 gr):ct (6‘ 9)

is zero when ¢, CH1(R3mx[0, 7)), CO*R*" %[0, 7)) and
satisfies (6. 5), (6.6), and condition (¢). Let C3" be a
cube in R3™ with center at the origin and side of length
M sufficiently large that the support of # is contained
in the interior of the cube. Let V,(e) be the set of points
in C‘},”' for which lﬁ,,l <e. Then @ may be written as

Q= 121 Q;, (6.10)
where
Q1= Juvpnto, ¥#* Vb, d7y - - - dT, dt, (6.11)

Q,= Jka,x:o.f: [(Ag)* g, - u*AyL,)d7y -+ - drndt, (6.12)

. i} - -
i f = WLy dFpdt,  (6.13)
[Cyf Uy, ¥, L0, 71

] [3”‘ du*

Q -f m O @, &
¢= > e Er
Le3 Uy % w0 7 454 O%s Lt 7 Oy

- 2ib u* g,] dvy - - dr,dt, (6.14)
3m
?
@--f Yo
’ [cf,”'-uk ¥, 1[0, 7 721 0%
x[ga u*a—g']di e dFdt (6. 15)
] £ axk 1 m“e. .

That @, is O(¢%) follows from (6. 5). That Q, is zero
follows from (6. 6) and the theorem of Gauss.

The term @, is easily seen to satisfy the inequality

1
Q| <B 2 Qu,

2 (6. 16)
where B is a constant and
1 - -
= ——dvyc o dr,, 6.17)
Qki '/;kﬂci,mlRil 1 m

By a coordinate transformation the term @,; can be
shown to be O(€?). By means of the divergence theorem,!’
a coordinate transformation, and condition (¢) in the
case of @5, the terms @, and @5 can be shown to be

O(e?) and O(e*™#), respectively. Therefore @ is O(*™®).

As @ is independent of €, which can be made arbitrarily
small, the theorem is proved.
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Under the hypotheses of Theorems 6, 1 and 6, 2a the
members of the set J={¢,}, multiplied respectively by
exp(- ia;f) and extended periodically in time, are
quasiperiodic pointwise solutions of the Schrédinger
equation. From Theorem 4.1 these solutions form an
orthonormal system in L%(R") for almost all £, and this
is true for all ¢ if the hypotheses of Theorem 4.3 are
additionally satisfied. From Theorem 4.2 these quasi-
periodic solutions are complete in L?(R") for almost all
t if the spectrum of the Schrddinger operator is purely
discrete.

7. THE TIME-DISPLACEMENT OPERATOR

A linear operator on L%(R") is a time-displacement
operator for the Schrddinger equation (1.1) if it is unit-
ary, strongly continuous in {, satisfies the composition
law

T(¢, )T, tg) = T2, £,) (7.1)
with
T(ty, t) =1, (7.2)

and satisfies the Schridinger equation in some sense
when applied to a particular dense subset of L%(R"). In
existence proofs for time-displacement operators as-
sociated with evolution equations it is usually most suit-
able to require a strong solution property. Our develop-
ment is oriented instead toward a pointwise solution
property. In general, neither type of solution implies
the other.

In this section we investigate expression of the time-
displacement operator as a sum of quasiperiodic terms,
Clearly, this is only possible when the spectrum of the
Schrédinger operator is purely discrete. However, in
the case of mixed spectrum we obtain an isometric
operator which is a partial solution. It is to be noted
that our results are somewhat weakened by the fact that
Theorems 4.1 and especially 4, 2 are true only almost
everywhere in £, The final theorem in this section pro-
vides further insight into the form of the time-displace-
ment operator.

We make the following assumptions, the first three of
which are permanent (the subscript  may be taken to be
either 1 or 2):

(a) A, is essentially self-adjoint.
(8 The point spectrum of 4, is not empty.

(y) The eigenfunctions of Z, are members of (7.3)
CHYR"x[0, 7]) when I=1 and are members of
CEYR3™ %[0, 7]) and C*(R®*™ %[0, 7]) when I =2,

(6) The integrals ||¢,l|? converge uniformly in .

The set J ={§j} is given by (4. 4) and extended periodi-
cally in ¢ as specified in Sec. 6. The set of correspond-
ing eigenvalues is denoted by {7\,}. First we see what can
be said without the hypothesis (7. 395).

Theovem 7.1: Assume (7.3a—y), and let {a,} be a set
of complex numbers, independent of ¢, such that
3; la;1* is convergent, Then the function

P(t) = ,Ei a;5,(t) exp(-ixt) (7. 4)
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is an element of IZ(R") for every {< R! and a pointwise
solution of the Schrodinger equation when the sum is
finite. The series defined by ¥(f) converges in L%(R")
uniformly in f and satisfies the inequality

sy |* <23 |ay . (.5)
Proof: Consider the sequence of partial sums
¢N=J,Z}:31 a;¢;(t) exp(~ ixgt). (7.6)
Taking N> M, we have
9w = 0|2 = fen jpzﬂ a;,(t) exp(= ingt)| " dx. (7.7

By Theorem 4.1 the members of J form an orthonormal
system in L2(R") for almost all £. Let M be the set of
values of ¢ for which this is true. Then, as the function
¢;(t) are continuous in ¢ at every x € R", for every ¢

we can find a sequence

N 2
u,= j=EM+1 a;Z;(t,) exp(— i) (7.8)
such that
N 2
| El a;&;(t) exp(- ix;f) (7.9)
=M+

pointwise, and f,€ M. By the Fatou lemmal® it follows
that

95— ¥y ||* < limint [ ,u,dx. (7.10)

Applying Theorem 4.1 to the right side of (7. 10) we find
that
N
low=vul?< 20 |ay]2 (7.11)
J=M+
As Y74 lagl 2 ijs convergent and {aj} is independent of {, we
conclude from (7.11) that the sequence of partial sums

converges in L}(R") uniformly in £. That is, for arbi-
trary €> 0 there exists N(e) independent of £ such that

M>N(e) = |- 3| <e. (7.12)

To obtain the estimate (7, 5) we apply as above Theorem
4.1 and Fatou’s lemma to the quantity ||#,]|° to obtain the
inequality

N
leli<2s las]?, (7.13)
and then take the limit on N. As {¢,} converges to ¢ in
LZ(R"), we may interchange this limit process with the
integration on the left of (7.13), and the desired result
follows. That each partial sum (7. 6) is a pointwise
solution of the Schrddinger equation follows directly
from Theorems 6.1 and 6. 2a, and the theorem is
proved.

Define a quantity for ¢, #, R! on L?(R") by

T, =2 6,0 expl- in (= )N, B (1.19)
From Theorems 7.1 and 4.1 it is clear that T'(¢, %)) is a
map of LX(R") into itself if and only if 5., 1(£;(t,), 912
converges for every . The hypotheses (7. 3a—rv) appear
to be insufficient to guarantee this convergence for
every ;. Therefore we cannot claim that (7.14) is a
well-defined operator on L%(R") for every #,. Recall
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from Theorem 4. 3 that, under the additional hypothesis
(7.36), {¢,;(#)} is an orthonormal system in L*(R") for
every #,, which implies (7. 14) is well defined on L?(R").
In this circumstance we shall also consider the operator
(7. 14) on the subspaces

Dy(t,) E{u lu= f)i b;5,(ty), N finite} (7.15)

and
D(ty) =Dy(ty) (7.16)

of LYR"). Here {b;} is a set of arbitrary complex con-
stants. The closure Dy(¢,) of Dy(y) is the span of the
orthonormal system {¢;(4,)}.

Theorvem 7. 2a: Assume (7. 3a—056). Then the linear
operator (7.14) on L%(R" into itself is strongly continu-
ous in ¢ and has the properties (7. 1) and

(T(t7 to)u, T(ty to)v) = (T(t(b tO)u’ T(t07 to)v) (7 17)

for every ¢, #, ty,c Rl. T(¢,¢)u is a pointwise solution of
the associated Schrédinger equation for every u c Dy(Z,).

Proof: The properties (7.1), (7.17) are easy conse-
quences of Theorems 4.3 and 7.1, and continuity of the
scalar product in L*(R"). The pointwise solution prop-
erty was shown in Theorem 7.1, Now consider the
strong continuity, and let ¥ be an arbitrary element of
L*R™). We have

| 7@, tyw- T, t)9|

<

N
;:‘1 (&5() exp(= ingt) — &; (') exp(—i0;2")) exp(inty)

X (ci(tO) 3 l,b)

+

ZQ) &;(t) exp[— ax;(t = 1) 1(¢; (%), lP)“
j=N+1

©

5 6 expl- iy - 1))t 9.

J=N+1

(7.18)

+

By Theorem 7.1, T(¢,%,)% converges in L?(R") uniformly
in f, so, given €>0, we can find N(e) independent of £, 2’
such that the second and third terms on the right of
(7.18) are each less than €¢/3 when N> N(e). As N(e) is
finite and independent of ¢, ’, we can, using Theorem
4,3, find 6(c) >0 such that |f—#'| < &(¢) implies the first
term on the right of (7.18) is also less than ¢/3. There-
fore, for arbitrary e>0 we can find () > 0 such that

|e-2'| <6(e)=> || T, t)¥ - T, t)¥]| <e, (7.19)
and the theorem is proved.
The following form of Theorem 7. 2a applies when
T(t, t,) is defined on D(Z,).

Theorem 7. 2b: Assume (7.3a—35). Then, in addition
to the properties in Theorem 7. 2a, the operator (7.14)
on D(t;) onto D(t) is isometric and satisfies (7. 2).

Proof: First we show the range of T'(¢,¢,) on D(f,) is
indeed D(f). To see this, let x=3;(&;(#), x)¢;(¢) be an
arbitrary element of D(¢). Then it is clear that the
function

b= ? (25(8), x) exp[in(t - 1) 1¢,(t,) (7. 20)

is an element of D(,) and satisfies T'(¢, %)) =x. The .
relation (7. 2) follows immediately from the definition of
D(¢,). For arbitrary u,v € D(fy) (7.2) implies
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(T(tO’ tO)u; T(t07 tO)v) = (u; ’U). (7. 21)

Relations (7. 21), (7.16) imply the isometry, and the
theorem is proved.

The following theorem shows that, in the case of
purely discrete spectrum, the operator (7.14) has the
requisite properties of the time-displacement operator
almost everywhere in £, {;.

Theorem 1.3: Assume (7.3q~—3). Further, assume
the spectrum of A, is purely discrete. Then the opera-
tor (7. 14) is strongly continuous in £ and satisfies (7. 1).
Also, for almost all £, £, €R!, the operator (7.14) is a
unitary map of L%(R") onto itself, has the property (7. 2),
and satisfies the Schrddinger equation pointwise when
applied to the dense subset Dy(f,) of L%(R").

Proof: From Theorem 4. 2 the spaces D(t), D(t;) are
equal to L%*(R") for almost all ¢, #,. Therefore, as an
isometric map on a Hilbert space whose range is the
same Hilbert space is unitary, and as T'(Z, ¢, is
isometric from Theorem 7. 2b, we conclude that T'(t, ¢;)
on L*(R™ is unitary for almost all £, f,. As D(f,) is equal
to L%(R™ for almost all £,, Dy(,) is dense in L*(R") for
Theorem 4. 2 and the definition of D(¢;). The other prop-
erties have been established in Theorem 7. 2a.

Theovem T7.4: Assume (7.3a—35). Then the operator
(7.14) on D(¢y) onto D(¢) may be written in the form

T(t; tO) = P(t’ t()) exp[_ iB(to) (t - to)]- (7 22)

The operator B(t;) in D(t,) is self-adjoint for every ¢,
periodic in that parameter, and independent of . Its
spectrum is independent of #; and is related to the point
spectrum of A, by 6(4,)={\; + 27/ 7}, where » runs
through all integers and {)\,} is the set of eigenvalues of
B(t,). The operator P(f,%,) is isometric, strongly con-
tinuous in ¢, periodic in ¢, #;,, and satisfies

P(t, t)P(t', t,) = P(t, t,) (7.28)
with
P(ty, ty) =1 (7.24)

Pyroof: We define an operator B(t,) in the Hilbert space
D(¢y) by

Bltyu ?1 N )&ty )

with domain

(7.25)

D(B(ty)) ={u|u, B(ty)u € D(ty)}.

As the members of {};} are real and, from Theorem
4.3, the system {¢,(%,)} is orthonormal, it is clear that
B(t,) in D(t,) is self-adjoint. By definition B(t,) is
periodic in {,. Relation between the spectra of A; and
B(t,) is clear from definitions and Lemma 4.1, By the
operator exp[- ¢B(fy)(¢ - ¢,)] we mean

exp[— iB(fy)(t ~ o) Ju =§) exp(— i0;(f — £) ] (o) (£,(t0), )

(7. 26)
or, equivalently,
exp(— iB(to) (- t)]= [ exp[- ix(t - t)]dE(Ey), (7.27)

where E,(t,) is the spectral family of B(f;). Clearly, the
operator (7.26) maps D(f,) onto itself. We define P(t, #;)
on D(¢,;) by
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P(t, tyyu=23 £(0)(&;(t0), ). (7. 28)
As {¢;®)}, {¢;(¢,)} are orthonormal, when u,v € D(t;) the
sequences of partial sums

Pyt )= jii £, (20, ), (7. 29)

(exp[— iB(ty)(t = to) Dt =§ exp[~ Iny(f = 29)15R(E0) (Ea(to), )

(7.30)

converge in D(¢#,) respectively to P(¢, {,)v, exp[—iB(t)

X (# — #p) Ju. Using these facts, along with continuity of
the scalar product in D(f;), we see that (7. 22) is indeed
satisfied. Relation (7.24), as well as periodicity, im-
mediately follows from the definition of P(¢,%,). The
proofs in Theorems 7. 2a, b of strong continuity of
T(¢,1,), the isometry of T(¢,£,), and relation (7.1) are
readily seen to be applicable to P(¢,¢;), and the theorem
is proved.

The corresponding statement of this theorem when the
spectrum of A, is purely discrete is evident from the
development above and Theorem 7.3. In particular,
B(t,) is self-adjoint in L*(R") for almost all #;, and
P(t,t,) is a unitary map of LZ(R") onto itself for almost
all £, ¢,.

8. DISCUSSION

In this work we have found a criterion which is neces-
sary and sufficient for the existence of quasiperiodic
pointwise solutions in L%(R") to the periodic, time-depen-
dent Schridinger equation, This criterion rests on two
hypotheses: essential self-adjointness of the Schrédinger
operator defined in Sec. 2, and sufficient regularity of
its eigenfunctions. The first hypothesis was shown to be
satisfied for a limited class of problems. Although we
consider it reasonable to expect that both hypotheses
will be satisfied to a considerable degree of generality,
this remains to be shown.

A strong point of our criterion is that it is in a form
well suited to application, That is, the question of the
existence of quasiperiodic solutions to a particular
Schrédinger equation is reduced to the qualitative spec-
tral analysis of an operator which can be written ex-
plicitly. For purposes of qualitative spectral analysis
it is desirable to remove the period parameter 7 from
the underlying Hilbert space. This can be done as shown
at the end of Sec. 2.

Although well suited to the investigation of quasi-
periodic solutions, our approach is less successful with
respect to the time-displacement operator. However,
under an additional hypothesis of uniform convergence,
we have shown that, when the spectrum of the Schré-
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dinger operator is purely discrete, there exists an
operator expressible as a sum of quasiperiodic terms
which has all the requisite properties of the time-dis-
placement operator almost everywhere in {. The form
of the operator T'(t,?,) expressed in Theorem 7.4 is
highly suggestive. It leads us to suspect that, regard-
less of the nature of the spectrum of the Schrédinger
operator, the time-displacement operator may be
written as the product of a periodic unitary operator and
the exponential of a self-adjoint operator dependent only
on the initial time. We shall return to this question in a
forthcoming publication.
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One of the coordinate systems commonly used in the three-body problem consists of three
center-of-mass coordinates, three interparticle separations, and three Euler angles specifying the
orientation of the triangle whose vertices are the three particles. The usual specification of the Euler
angles for this system, which aligns the axes of the body-fixed coordinate system with the principal
axes of the moment of inertia tensor, results in a coordinate singularity whenever two of the
moments of inertia are equal. An alternative specification of the Euler angles for the equal mass case
which treats the three particles symmetrically and eliminates the coordinate singularity at the

equilateral triangle configuration is presented.

. INTRODUCTION AND STATEMENT OF THE
PROBLEM

One of the coordinate systems commonly used to de-
scribe the location of three (identical) particles lying at
the points r;, ry, r; consists of the position

Rié(r1+r2+r3) (1)

of the center-of-mass, the three interparticle
separations

s1=|r3—1y],

Sp=|ry=14], (2)

S3= |r2 -y l ’
and a set of Euler angles a, 8, y describing the orienta-
tion of the triangle whose verticles are at ry, ry, rs.
Edmonds’ conventions! will be used for the Euler angles:
a rotation through a about the z axis of the space fixed
system is followed by a rotation through 8 about the new
y axis and in turn by a rotation through y about the new
z axis (in the body system). If x;,y;, z; are Cartesian co-
ordinates of r; in a right handed space fixed system, and
£4, M4, &; are the Cartesian coordinates of r; in the body
system, then

x;=(cosa cosp cosy - sina sin-* §;
— (cosa cospB siny + sina cosy) 1; + (cosa sing) &;,
y;=(sina cosp cosy+cosa siny) §; 3)
- (sina cosp siny — cosa cosy) n,; + (sina sinp) &,
2;=— (sinB cosy) &; + (sinf siny) n; + (cosB) &,.

Nine conditions are needed to specify the coordinates
£;,M4, &; (6=1,2,3) in the body system. Three are pro-
vided by the (rotationally invariant) Eq. (2), three more
by the conditions

£1=86=8=0, (4)
which state that the ry, ry, r;y triangle lies in the £ -1
plane, and two more by the conditions

Ei+&+83=m+mp+m3=0 (5)

which state that the center of mass lies at the origin

of the § - n— ¢ system. The positive direction on the

¢ axis is specified by requiring that a circuit from r;

to r, to ry back to r; encircle the origin of the £ ~ 7 plane
in a counter clockwise direction.
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This statement plus the conditions (2), (4), (5) fix the
orientation of the ry, r,, ry tirangle in the £ -7 - ¢ system
up to a rotation about the ¢ axis. If polar coordinates
are introduced in the £ - i plane via

§i=pycosdy, m;=pysing,, (6)

it follows from (2) and (4)—(6) that p;, py, p3 are given
by

P1=5(= 57 +28,7 + 2859 /2, (7a)
Py =3(25;% = 5,2 +28,2)1/2, (70)
py=3(28,7 +28," - s5)'/? (Tc)
and that the angles ¢4, ¢33, ¢35 defined by
o1 =¢2— b1, P2=P3— by, P13=P1- @3 ®
are fixed by
singyy = (I5)' %/ (3 pyp ), (9a)
oSy = (847 + 55" = 5537)/(18p4py), (9b)
singg, = (1) 1%/ (3! pyps), (9¢)
oSy = (= 55,7 + 8,7 +55°)/(18psp3), (9d)
singys = (111y)' 1%/ (3! pgpy), (9e)
cosdy,= (512 ~ 55,2 +3%)/ (18pspy), (9f)

where I; and I, are the principal axis values of the mo-
ments of inertia in the £ — 7 plane divided by the parti-
cle mass. Explicitly,
Li=[s2+s5% +s5®

+2(511+ 85 + 551 = 5,%5,% = 5,25,2 =5,25,2)1/%]/6 (10)
and

L= (8 +85 + 552 = 2(sy* + 55% + 55 = 542857

- 8588y = 8525, 1)1 /2)/6 (11)
One more condition is needed to pin down the rotation
about the ¢ axis and complete the specification of the
orientation of the ry, r,, r; triangle in the £ -7 - ¢ plane.
The usual condition
Eimy+ Eama+§3m3=0 (12)

(vanishing of the products of inertia) aligns the £¢~n-¢
axes with the principal axes of the moment of inertia
tensor and implies that

Copyright © 1974 American Institute of Physics 1596
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= Ltan-i( B(sg2 = $,2) (811 1p) /2 y
1=e 25,7+ 58,7+ 555" = 55,°5y” ~ 28,°55* — 555”54

(13)

with similar expressions for ¢, and ¢;. With the usual
choice (12), the kinetic energy operator

R L X )

H= _% Zw%(ax, * ay‘ M az‘Z (14)

can be expressed in the form%3
H=Hcm+Hlnt (15)

where

72 az)

= ——— —— +——
Hon==%m (axz vt 0zZ2 (16)

with X, Y, Z the Cartesian coordinates of the center-of-
mass R and

}[2
Hyp=— o (Ty+ T3+ Ty), 1m
where
i 9 8* ) <s12+sz2—332 92
T1—2 (6312 * 632 * 633 * 818y ) 681832
. (— slz+szz+s32> L (siz—szz+ssz> 8’
S9S3 059053 838y 05308,
1 9 1 9 1 @
4=~ 2 . ° - 9
(s1 asy * Sy 0S8y * S3 as3>’ (18a)
_ 4(4]112)1/2 <322 - 332)_8_
2‘31/2(11—12)2 S 881
2 2 2 2 .
siosiha (st=sf) o | (s
+( Sy )as2 * Sg s wle) (18b)
and
Ty=- 31 1+ LY XL - L) - (I + D) (I - L) (72LY)
+iL - LY L2+ L?) (18c)
with
2 ] L 8* )
2__2 |2 A 2, {07 _ L __
L /3 2B +cotp aB+csc6(aaz+¥,z 2 cosp sady) |’
(19a)
. 0
L,=- zh'-a-a s (19b)
L —-iﬁ—a 19
[ a,y’ ( C)
and
L, =ik exp(¥iy) { cscB 9 _ cotf 2 Fi 2 (19d)
* da oy a8/’

Here L? is the total angular momentum operator, L, is
the z component of angular momentum in the space-
fixed system, L,, L,, L, are components of angular
momentum in the body system, and L,=L,+iL, are
raising and lowering operators in the body system.

The traditional condition (12) has the disadvantage of
introducing a coordinate singularity at the equilateral
triangle configuration s; =s,=s;, where I; =1, and the
right-hand side of (13) is undefined. This difficulty also
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shows up in the kinetic energy; the operators T, and T;
defined in (18b) and (18c) contain coefficients which are
infinite when I; =I,, The line s;=5,=5; in the sy — S5 - 53
space is like a square root branch point in the complex
plane: one circuit around this line changes the right-hand
side of (13) by 7. Infinitesimal changes in s;, S,, and/or
s3 in the neighborhood of s; = s, = s3 can result in finite
changes in the right-hand side of (41), making it awk-
ward to expand about s; =8y =S;.

This coordinate singularity has caused difficulties in
the theory of the nonlinear triatomic molecule? and the
triton. ® The present work was motivated by a desire to
avoid similar difficulties in the theory of the exchange
third virial coefficient.® A canonical transformation in
the form of an expansion about sy =s,=5; was used by
Weiguny® to eliminate the singularity. However, such
an expansion does not give a new coordinate system
globally. In the next section, the usual condition (12)
will be replaced by an alternative condition which elimi-
nates the singularity.

A singularity is also present at those configurations
in which the three particles are in a straight line so that
I, or I, vanishes. This singularity, which is accompanied
by a decrease in the number of rotational degrees of
freedom from three to two, will not be discussed further
in the present paper.

1f. SOLUTION OF THE PROBLEM

The coordinate singularity at s, =s, =5, arises from
the fact that when I; =1,, all axes through the origin of
the £ -7 plane are principal axes of the moment of
inertia tensor, so that aligning the principal axes of the
moment of inertia tensor with the coordinate axes no
longer fixes the coordinate system. An obvious way out
of the difficulty would be to replace the usual condition
(12) by a condition such as n;=0, which places particle
1 on the £ axis. This solution, however, has the defect
of treating the particles asymmetrically, thus compli-
cating the discussion of the symmetry of the wavefunc-
tion under particle permutation,

In the equilateral triangle configuration s, =s, =53 with
¢4 equal to an arbitrarily chosen constant ¢, the parti-
cles can be permuted by certain rotations which are
equivalent to changes in Euler angles &, 8, v. In particu-
lar, the interchange of particles 2 and 3 results from a
rotation of 7 — 2c about the ¢ axis followed by a rotation
of 7 about the 7 axis; this is equivalent to the replace-
ment of a, B,y by o/, p’, ¥y’ where

a'=r+a, f=1-8, Y'=—2c—7. (20)

Similar formulas hold for other permutations of the
particles: to interchange 1 and 3, replace ¢ by ¢ +(27/3)
in the above (i.e., ¢4 by ¢;); to interchange 1 and 2,
replace ¢ by ¢ +(47/3) in the above (¢; by ¢3).

The dependence of ¢; on sy, S;, and s3 for an arbi-
trary configuration will now be determined by requiring
that a permutation P of the particles be accomplished by
applying the permutation P to the interparticle separa-
tions sy, Sy, S; and making the same changes in the
Euler angles as are made for the equilateral triangle
configuration. For example, 2 and 3 are to be inter-
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changed by replacing sy, s,, 53, @, B, y by s/, sy, s3,
a’, ') v where o/, B, v" are given by (20) and
S3' =83, (21)

A rotation of 7 — 2¢ about the ¢ axis followed by a rota-
tion of 7 about the 7 axis carries ¢,(sy, sy, S3) into 2¢
— ¢4(s4, 89, S3); interchange of s, and s, then carries it
into 2c - ¢4(sy, 53, Sy). The fact that particle 1 is left
fixed by the interchange of 2 and 3 then implies the
condition

d1(sy, S2, S3) =2¢ = P1(sy, S3, S9). (22)

Consideration of the interchange of 1 and 3 yields
b2(s1, S2, S3) = 2[c + (27/3)] = By(s3, S2, 54),

while considering the interchange of 1 and 2 leads to
®3(s1, S3, S3) = 2[c + (47/3)] - ¢5(s,, 51, 53). (24)

Because all other permutations can be built up from the
interchanges, no further conditions need be imposed.
The general solution of Eq. (22)—(24) is

r_ r__
S =81, 89 =8y,

23)

}1(S1, Sz, 83) =C +5(= Pay + P13) +£(S4, Sp, S3), (25a)
B2(S1, S2, S3) =€ +21/3 +3(= B3y + Pgy) +f(sy, Sp, S3), (25b)
®3(S1, Sp, S3) =C +47/3 + 5(= P13+ bz) +f(sq, Sg, S3), (25¢)

where f is an arbitrary antisymmetric function of s, s,,
and s; and ¢y, ¢33, ¢y3 are defined by Egs. (9). It is
easy to verify that (25) is consistent with (8). As a con-
sequence of (9), ¢y, ¢33, ¢y3 all lie between 0 and 7.
Thus ¢; - f cannot stray from its value ¢ at the equilater
al triangle configuration by more than 7/3, and is well
behaved in the neighborhood of the equilateral triangle
configuration.

Let ¢,°'¢ stand for the right-hand side of (13), and
¢"°" for the right-hand side of (25a). It can then be
shown that the difference 6= ¢;°!4— ¢;**¥ between the
two specifications of ¢, is given by

0(s1, Sy, $3) = $tan”![N(sy, 5y, 83)/D(sy, 53, 53)]

- ¢ - f(sy, Sy, S3), (26)
where
N(s4, 83, 83) = 24(8L 1) /2[3(1y + I)?

+4L5)(s1% - 850 (s5% = 55) (852 = 5%) (27)
and

D(sy, Sy, 83) = 27(1 - L)* + 4 + ) [, + I)?
+ 121112](812 + 322 - 2332)(322 + 332 - 2312)
X (842 + 8,2 — 25,2). (28)

The new coordinate system differs from the old only
in the specification of y: y**¥ =914+ 0. It is easy to show
that 6 reduces to the rotation generated by Weiguny’s
cannonical transformation® in the neighborhood of s; = s,
=83, The effect of this rotation on the Hamiltonian given
by Eqs. (15)—(19) is the replacement of T, and T'; by
T,! and T4’ where
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(slz - 322)(322 _ 382)(332 _ 312) 3
2 TR AL AL
3 .
i
- T1f+‘EiA¢f>(ﬁLc) (29)

and
Ty == M - L+ [- Gl

3
X[2( + )% = (I, - L)*)+ Zi) (Q" -3(A, f)%)] B2L?

i=
+ 2t - LY -¥[exp(2:6) L, + exp(— 246)L 2],

(30)
where
Q== 2(27ps%p2ps") BL L) 2py%(s,? — s5%)sy710 /05y,
(31a)
QZ = - 2(27p12p22p32)-1(31112)1 /szz(ssz - 312)32-1 a/ng, (31b)
Q3= = 2(27p%p,20,2) L (3I1y) p3* (s — s,.)s379/Bs;,  (3Lc)
0 g d -
A=4 (a_si) +(589) (5.2 + 897 = s32)(53—2)+ (s387)?
0
X (8% ~ 857 + 55%) (6—33) , (32a)
Mg = (5189) (542 + 852 — §352) A NVYAR +(Sy84)t
2= (S182)7 (81" + 82" = §5) {5 35, 253
x(— 312+822+332) (_a') N (32b)
083

and

" 0 .
Ay= (sss0sit =5 +55) (5 ) + 299 s+ 570455)

“(ass) *4 ()

If the arbitrary antisymmetric function f and its first
two partial derivatives are nonsingular at I; =1,, then
the operators T,’ and T3’ no longer contain the singu-
larity at f; =I, which was present in Ty and T;. Further-
more, if f and its first two derivatives vanish at I, = I,,
the term T’ can be shown to reduce to the Hamiltonian
for a plane rigid rotator when I, = I,.

(32¢)
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The domains of definition of the operators used to factorize the generalized Veneziano model are
studied within the Hilbert space defined by the harmonic oscillator creation and annihilation
operators a,‘(’)",au(’). These individual operators may not be well behaved, although, of course, the
matrix elements used in the conventional operational factorization are well defined. Concerning the
individual operators, it is shown that the ground-state vertex written as V' (p)=exp[—27_,
(p-a) /v rlexp[E2., (p - @ 7)/V/r] is nowhere defined within the Hilbert space; the product
with a twisting operator Q(g)}V(p) is, however, densely defined, as is the symmetrical three-reggeon
vertex. The propagator D(p) is bounded everywhere, away from its poles. The twisting operator
Q(p) is undefined on finite occupation states, but is densely defined on a subset of coherent states;
its Hermitian conjugate Q% (p) is densely defined on both finite occupation and coherent states. It is
found that a suitable rewritten form of the product D(g)V(p) is densely defined for certain values
of momenta; this relates to the fact that off-mass shell states satisfying (L,— L _, — 1)} > =0, where
L, are the conventional gauge operators, are better defined than those satisfying

(Lo—L _,+r—1@'>=0.

1. INTRODUCTION

The study of the properties of the N-particle generali-
zation of Veneziano's beta function dual model for two-
body scattering has been greatly facilitated by the har-
monic oscillator operator formalism.! This operator
formalism makes manifest the factorization properties
and the spectrum of states which are not obvious in the
original integral representation. It can be written in a
form where both the factorization and Mdbius invariance
properties are displayed simultaneously.?2 For a review
of the formalism we refer the reader to the article of
Alessandrini ef al.,3 and the references cited therein.

In the present paper we shall be concerned with the
operator formalism developed in Ref. 1, together with
the twisting operator and symmetric three-reggeon
vertex of Ref.4. With the three operators, the propaga-
tor D(p), the symmetric vertex V(p, p,p5),and the
twisting operator ©(p), one can,aside from the gauge
identities (which we shall consider toward the end of
the article in discussing the physical states), build up
the whole theory including loops.

We shall discuss the mathematical basis of the operator
formalism, in particular the properties within the Hil-
bert space defined by the Fock space of harmonic oscil-
lator states.

Concerning the three principal operators, regarded as
operators acting on Hilbert space states, the results
may be summarized: The propagator D(p) is bounded
over the whole space;the ground state vertex V(p) is
nowhere defined, while the symmetric vertex Q(q) V(p)
and its generalization to the symmetrical three-reggeon
vertex V(p,p,p3) are densely defined; the twisting
operator Q(p) is not defined except on states with null
(4-momentum, while its adjoint *(p) is densely defined.

Of course, the Hilbert space is rather a restricted con-
cept and similar difficulties of staying within a Hilbert
space occur already in nonrelativistic quantum mecha-
nics.5 The conventional usage of the operator formalism
involves always matrix elements of strings of operators
(VDVD --.V) and these are well defined in terms of
generalized beta functions and their analytic continua-
tion; thus the results of the present paper do not, of
course, cast any doubt on the validity of the normal use
of the operator formalism (i.e.,on the matrix elements).
The mathematical properties of the specific operators
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are important to know, if one wants to extract as much
as possible out of the operator formalism. It is also of
importance in understanding dual models and might
provide a means for further developments and for con-
struction of other more realistic dual models.

The organization of the paper is as follows: In Sec. 2
we give some mathematical definitions of what we mean
by certain classes of vectors within the Hilbert space
and introduce some terminology useful for discussing
the domains of definition of operators. We study the
propagator and twisting operator in Sec. 3, while in Sec.
4 the vertex is investigated, firstly the ground-state ver-
tex and then the fully symmetric three-reggeon vertex.
Section 5 is concerned with the redefinition of the pro-
duct D(q) V(p) and with the alternative definitions of
physical states. The final Sec. 6 is devoted to some
discussion.

2. MATHEMATICAL DEFINITIONS

When we, in the following sections, are going to claim
that certain operators are defined what we shall mean
is really only that they are defined as operators mapp-
ing a Hilbert space into itself (or possibly into another
Hilbert space).

The Hilbert space of interest for us is the Fock space
in the operator formalism? of the Veneziano model.
Let us first consider a set of occupation number states
of the type
l{l%9l%, ceey l;;l%s . '}>
M
0191 3 (a‘s,g) T)ln

w1 p=0 (I8 1)1/2

o}, 2.1

where
[@{P,ai™ "] = — 6
with
8yy =— 6, 1)

nmg;.w
(2.2)

40

Here the I} are zero for n sufficiently large. The state
with all occupation numbers identically equal to zero is
called the vacuum state | 0).

We define the space ¥ as the vector space consisting of
all (finite) linear combinations of the vectors (2.1). We

Copyright © 1974 American Institute of Physics 1599
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call § the space of finite occupation states. A typical
state | f) € § may be written

lf) =(Z:§ C{Z)I{l}>,

where only finitely many of the coefficients Cy;) are non-
Zero.

The space is made a pre-Hilbert space by defining the
inner product

<f'|r}f>={zl; CH)CU) (2.3)
which follows from (2.1) when we put
OZO agn)*a(on)
r= (1~ . (2.4)

A norm is defined by || [ f) || = V{f| T | f). Note that

this definition of the metric is not Lorentz invariant.

Completing the space &, we obtain the full Hilbert Fock~
space 3. The points | k) of the Hilbert space 3¢, which
we will consider in this article, can be written as for-
mally infinite linear combinations of states of type (2.1),
i.e.,

|h>=“2) c{l} l{l}>9

but now an infinite number of coefficients Cy;) may be
different from zero. However, the norms in X are
bounded, and it is thus required that

2 lcpl2< o,
g 't

As a consequence of the noncovariance of the metric T,
Eq. (2. 4), the Hilbert space 3¢ is not covariant.

(2.5)

(2.6)

An example of a state in X is the coherent state defined
by

| am) = exp <Z) al® . a“”) |0y, (2.7
n
where we have required
00 3
22 ez <o, (2.8)

n=1 p=0
We shall denote the set of all finite linear combinations
of finite-norm coherent states as © .,

A function 7 that maps every vector |2) € D into a
vector 7| 2) € A £ X is called an operator in the space
& defined on the domain D and A is called the image
when it is required that each element in A has the form
T |h).

In the following sections we shall be interested in
whether the domain D is a dense set in 3, i.e., whether

D= X, (2.9)

where D is the closure of D, according to the topology
defined by the norm.

We shall also be interested in whether the operators
are bounded. A linear operator I is bounded when

sup || TR < o, (2.10)
N1e>s
lh> D

3. MOBIUS GROUP OPERATORS

In the operator formalism of the dual resonance model
certain representations of the group of Mobius transfor-
mations leaving a circle invariant SL(2,R) = SO(2,1)
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homomorphic to SU(1, 1) play an important role.3 In the
conventional model the generators are

o
Lo(p) =—p2— 2 namt-a®,
n=1

L. (p)=— V2 aDt-p_ OZO) viln + 1) a@»*DT - gm
n=1
L_(p) = (L, )" (3.1)

Of particular interest are the following functions of
these generators: the propagator

D= (Ly— 1)1 (3.2)
and the twisting operators

2 =(Dioet = e (- 1to,

o =et (—1)fo = (—1)fo L-, (3.3)

In the upper half of Table I the boundedness and domain
properties of such operators are summarized.

We now indicate how these 2ntries in the table were ob-
tained.
(i) D(p) and D™1(p):

On the space ¥, D(p) is bounded, since the eigenvalue
of (Ly— 1)"! of an ¥ state is bounded. This is because
the eigenvalue of (L, — 1)"1 on a state |f) is given by

(Lo—17L1f,p) “E} Cuy Lo — D1I{t},p)

2 Cp & p2— 2 nly — 0 Hihp)

LN
(3.4
and the norm of this state || (Lo — 1)t| f) |l is always
bounded off~-mass shell. Now we can apply a theorem
about bounded operators to be found, for example, in
Naimark's book.6

Theorem: In a Hilbert space 3, a bounded linear
operator A is extendible by continuity from its domain
D, to a bounded linear operator with D, i.e., the clo-
sure of D, , as its domain of definition.

In the present case, since D(p) is bounded on & it can be
extended, therefore, by continuity to be bounded on § = I,
the full Hilbert space.

D™1(p) is unbounded on §,but it is defined there,i.e.,
Dp-1(py 2 F, which is easily seen from Eq. (3.4) written

TABLE I. Boundedness and domain properties of operators.

Defined Defined
on finite (i.e.,
Bounded occupa~ Defined on bounded)
on ¥, tion coherent Defined onon the
the full states, states, a dense vacuum,
Hilbert i.e., i.e., subset of i.e.,
Operator space D29 Doe Qe D> 10y
D(p) Yes2  Yes? Yesd Yes? Yes?
D1(p) No Yes No Yes Yes
QUp) No Yes No Yes Yes
Ap) No No No Yes b
V(p) No No No No No
) V(p) N No No No Yes b
2 <+ 2\C
D@ V(p) (52 <—1 ) No Yes No Yes Yes

2 We are always working off-mass shell for D(p).
b Yes, when p, = 0;No, otherwise.
Clpl2 =pg +p2.
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for (L, — 1). Now we consider D"1(p) acting on a cohe-
rent state

DL(p) | a®) = (Ly—1) | a®)
=(—p2— E) na)
n=1

The norm of this state is given by

a, —1la®) (3.5

[D"1(p) | @) |2
= (p2 + 1)2(a®™ | a™) + 2(p2 + 1)

n=

) o 2
x 3 nla®w(z(am |aw)+| (X nlaw|2
n=1

0
— 25 n?[am I"] (a|a®), (3.6)

n=1

and the summations can diverge, while still ( a, | an) is
finite. Therefore, D1(p) is not defined on €. It is, how-
ever, defined on a dense subset, for example, the dense
subset {la, =nz" ¥}, where | zl < 1 and n is a constant
4-vector.

(i) Q" (p):
On a state of the ¥ space we have
@ (p) | F) = (= 15?2 1) 3.7

Now the exponential in | L_(p)| becomes a polynomial;
also the mod? summation in L_(p) is finite. Therefore,
the state eZ- ¥ | £) has finite but unbounded norm. The
operator (— 1)£o(») is unitary and, therefore, norm pre-
serving. It follows that Q*(p) is defmed on EF , but un-
bounded on both F and F = ¥. Since |0) C iF Q*(p) is
defined on the vacuum,

For a coherent state | a,,p)

@ () a,,p) = (~ 1)FoP 2O exp <- b a"'p>|an,p>.
n=1 \/;7

(3.8)

Using the canonical formalism of Alessandrini et al.,?
we now have

L‘(O)lanm =’Z} Com OmsD)s (3.9)
where "
» ¢, Zm_1 < z ) (3.10)
m=1 vm vn \1—2z
Thus,

e a,,p)ll2

212w\ 2
n=1 .m§a<;n_> (:ln)am|>

exp(
exp(Z) la, |2
n=1
(=]
Z

W T D la,,, |2 + )
1
(3.11)
which for all @, > 0 can be divergent even for Z|a, |2
finite. To show that it can be defined on a dense set of
©,we use a, =7 2"/Vn with | z |< 1;then we have

~ z 2n
neL-@’lanp>|2=exp(}niz > L |2 )
=1 vn '1—z

x exp[—zRe<§) Z_"n-p>], (3.12)
n=1 N
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where |7 |2 =72 + n2, which is convergent for Rez < 3.
Therefore, 2*(p) is defined on a dense set in C.

(iii) Q(p):
For general p2 we have

Jln(p)10>llz=exp<|p P2 1)

(3.13)
n-l N

Note that for p¥ = 0 we have £(0)| 0)= |0). Thus,on
vacuum, Q(p) is not defined within the Hilbert space for
by * 0.

For an occupation state | f) we investigate first a singly
occupied level, where

le©)a] 10,0012 = || & **©a] | 00y
_ Eo (q+n)!< q

1/2
’ =®, foranygq=1,
q'n! \q+n

(3.14)

where we have used the exp11c1t form of L, (0), Eq. (2. 1),
and the fact that (— 1)Z0(0) s unitary, It is not difficult
to convince oneself that this argument generalizes to
any |f) state. Therefore, 2(0) is unbounded on § and
on its closure ¥ = .

For a coherent state we can write

1) la,) I2 =1l (- 1>L°(P’e'“‘°’exp( ) la, )2

-2 512, (0)

x Vm(=1)™ o, —p“lzj‘.

(3.15)

If we choose at = — zmp# /Ym such that |z|<1A[1—z]
<1 then this leads to a finite norm. By adding to a},
lower powers of z (obtained by differentiating «,, as is
discussed in more detail for the vertex in Section 4 be-
low) we can show that Q(p) is defined on a dense subset
of €, although not on € itself since € includes states with
a? such that, for example,0> z > — 1.

4. THE VERTEX

In this section we consider the conventional untwisted
vertex V(p) for emission of a scalar ground state meson;
the result will be that V(p) is nowhere defined within the
Hilbert space. We shall, however, find that the twisted
vertex Q(p + q)V(p) is a densely defined unbounded
operator. More generally the cyclically symmetric
Caneschi-Schwimmer-Veneziano vertex will be found

to be defined for a certain dense set of coherent states
in the sense that, putting in one type of coherent state on
one leg, together with another type on a second leg, one
will obtain at the third leg a normalizable state.

We shall first give some rather simple and convincing
arguments that the vertex V(p) is not defined as long as
the momentum p has no time component (which is pos-
sible for special spacelike momentum), and further is
not defined, for general momentum, on any € or ¥ state.
Only then shall we introduce a more abstract approach
to demonstrate that V(p) is quite generally undefined.

The conventional ground state vertex in the operator
formalism is written formally

- _3 (@®p) R (a-p)
V(P)—eXp< Zi = >exp<'§ = >(4.1)
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so that the N point function can then be written formally
(in a multiperipheral configuration)

Ay = (0| V(ky)D(S,,)V(E)D(S;3) - .. V(kyy)
X D(Sy-y )V (ky-1) 10},

where S;; =(p; +pig t oo +p)2 and the bra and ket
vacuum states have momenta k1 and k,, respectively.

(4.2)

We now will show the unhappy result that the operator
V(p) is not defined anywhere within the Hilbert space.
Define an operator

VAp) = exp < Z) a(m x"> exp (E 1%2 > (4.3)

so that lim V.(p) = V(p);also define, for momentum with
no time c%mponent, the unitary operator

U(p,x) = exp <p io) —1: x(a@ — a(")“)) . (4.4)
n=1 w/n

U(p, x) is unitary (and bounded) in ¥. Now, we use the
fact that

v ly) €3€3 a sequence {1 ¢,)}521
such that

lim |¢,) = |¥) whereall |¢;)eF. (4.5)
Now we observe that
V,(p) = C(p,x)U(p, %) (4.6)
with the ¢ number
2 X0 1
c(p,x) = exp (—?——E x—>. (4.7)
2 n=1 n

Now, since U(p, x) is unitary for all x, we can consider

lim [U(p,%)1,)112 = lim ll¢,)[12 = Il¥)l2, (4.8)
and then we see that
IV A(P) )12 = |c(p, %) 12 [U(p, %) | ¢,) |2
= le(p, %) (4.9)

Therefore, V (p) is bounded by |c(p,x)|and, for x| < 1,
V.(p) is defined on §. For x — 1, however, on a general
state (¢,

1im | 7,(0) 19112 = lim le(p, 912 1112
= . (4.10)

Thus we deduce, for momentum with no time component,
that V(p) is undefined everywhere in the Hilbert space.

For general py, it is easy to show that V(p) is not de-~
fined on any coherent state or any J state,as a Hilbert
space operator. In the case of a coherent state lfa,t,
g > there occurs, in the norm || V()| {e,},a> 1|, an
exponential of a term

[(gz 92 8 l}
n=1 N

which cannot be cancelled by any choice of the «, such
that

00
2 e, 2 <o
n=1

That V(p) is not defined on F states is seen by noticing
that the harmonic oscillators above a certain mode
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number are excited by V(p) in just the same way as
mentioned already for the coherent state.

The more abstract general proof for the nonexistence
of V(p) proceeds in three steps: (i) the derivation of an
operator identity for V, (p)'T'V (p); (ii) the proof that
the expectation value of an exponential of a Hermitian
operator is strictly greater than zero; and (iii) the de-
duction from (i) and (ii) that any image of V(p) has
infinite norm.

(i) By using the commutation rules, Eq. (2. 2), for the
harmonic oscillator operators, it is straightfor-
ward to find that (formally), for p, = (p,,,p),

V(p)TTV,(p) = exp (p,ﬁ ;ﬁx ) < b, > "“x”> r

n=1 V”E
0 am'xn o grxh
“ur
conlony B on{n 5 %)
=(1— xz)'”?f!’ U, exp (— H)T exp (H,)T,
(4.11)

as an operator identity, where

© at +a
A exp <poz> n0 n0 x,ﬁ

=t
i

(4.12)
n=1 \/77
is Hermitian with respect to the indefinite metric

-~

U, =0} (4.13)

and unitary with respect to the I metric

5;1= rgil (4.14)
and where
Hoep R %o ~ %o ., (4.15)
=0
is Hermitian in the I' metric
H,= THIT. (4.16)

In deriving Eq.(4.11) we used

o ) = (1 —x2)7*8 exp (H,)T,.

The I norm squared of V(p)|z), where |h > € X, is the
expectation value of this operator (4. 11),and from the
ultimate step in Eq.(4.11) we see that this expectation
value is equal to a diverging ¢ number multiplied by
the expectatlon value of an expontial exp (2H,) for the

state U |h)y. Since U is unitary and so bounded, this

state U |h) exists for all [hECJL and is in fact different
from zero, since IIU (ryll = il1e >l

o qa X"
Xp <21>0 > -
n=1

(ii) Now we wish to show that the expectation value
(hlexp(H)|h),for H a Hermitian operator, is greater
than zero.

According to the spectral theorem of von Neumann? for
Hermitian operators, we may write the Stieltjes integral
form of H

H= [

where I, is the family ofprojectors for the operator H.
More generally, we may make such an integral repre-

(4.17)
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sentation for any operator function of H, using the same
spectral function I, ; in particular,

2 exp (dl,.

The resolution of the identity I, is defined such that
11m I, = 0and thm I, = 1. Therefore, there exists a t'
Sach that e

exp (H) = (4.18)

(hl(1 =1,y k)Y >0,
whereupon, writing
(hlexp (H)|hy = [* exp (t) (kldl,|h)

0
+ XD (&) ¢hldl,\ny, (4.19)
we see that the first term on the right-hand side is
greater than or equal to zero, while the second term
satisfies

ft,mexp (h1dL | RY > exp (¢') [k ldL,|n)

= exp (t')(kI(1 —1,) k).  (4.20)

It follows that

(hlexp(H)|k) > 0. QED (4.21)
(iii) Now we combine the results of Egs.(4.11) and
(4. 21) to deduce that

1V(p)in) 12 = 11m [(1 — »2) -3p§-p

X (R|US T exp (2H,)U, | 1)) (4. 22)

22 -~ -~
= (}ril{;(l—xZ)”o P)'(hIU; Texp(2H,(U, |h)
=,

By this we have shown the the vertex V(p) is nonexistent
within the Hilbert space.

Despite the bad properties of V(p) the operator QV cor-
responding to the cyclically symmetric vertex can in
fact be defined somewhere even for spacelike momentum
of the ground state particle. Note that we must regard
the operator QV as a single entity rather than as a pro-
duct of two operators, if we wish to remain in the Hilbert
space. In fact let

e 20, g) (4. 23)

o0
la,q) =11
n=]1
be a coherent state with 4~-momentum g; the twisted
ground state vertex is formally written Q(q + p)V(p)
when acting on |a, q),and

Qp + V(p) laq) = Q0) exp ((p +aq- Ea(")f)

amr a®
(2 o)

exp (—P'E a—g—) exp (1)'2%) la,q) =

— (—qf} a(n)*): exp— 2 a®*(C,,,— 5,,.)at™):
exp (P E?/El) la,q)>
_.BXP< E%—“—-) { ECa——q 1.2 ,q>

(4.24)
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Here
m\1/2 n
Com= <;2_> (— 1)m<m>_
It is rather easy to see, by taking, for instance,
=Z*Vn-q with [z| <1A|1—2zI <1 (4.25)
and using3
o zm _ (1—2)»—1
nm e == (4. 26)
5" W

that the expression for the formal symbol Q(p + q)V(p)
|a, g) becomes

exp <p-q§ Z—")

n=1 R

Vi

{_ (_1_—-_21‘_}(1 i=1,2,...? >’(4- 27)

which is a finite norm coherent state. To be specific,

the norm is
a2yl a=2
exp (I’ 4"2:1 n) { 7 q§z=1,2,...’>"
|4|2) (4. 28)

2 =1

and this exponential is finite when |z| < 1 and |1 —2z]
<1.

The possibility (4.25) is only one out of infinitely many
since we can add to the series a any series for which
C - § has finite norm, i.e., for which

£ |5 conbuf <

n=1

(4.29)

By using (4. 26) it is easy by differentiation, for example,
to find an infinite number of such series §, namely

3'(:‘) =nn—1)...(0 —7 + V) Z"7/Vn (4. 30)

wherez = 1,2,...and z[{(1A]|1—2z|< 1. In fact one
finds

17 A—=—2)"m(n—1...n—r + 1)
n ?

f;cmn 15;7) =(-
(4.31)

which is obviously of finite norm because |1 —z| < 1.
We remark for its own interest that for z = } the series
B,,is an eigenvector of thematrix C with eigenvalue
(=1

We now want to show that by meansof the coherent states

where c, are 4-vectors, it is possible to argue that the
operator QV is defined on a dense domain in the Hilbert
space.

finite

+ c,;s(r),é, (4.32)
r=1

Since any coherent state |a)(with 25|, |2 < ©) can be
approximated by another one Ia ) prov1ded we can
approximate the series a by o' in the norm of the Hil-
bert space I, of series with convergent square sum,
we can show that the states of type (4.32) can approxi-
mate any coherent state. By choosing z in (4. 30) small
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but different from zero, one easily shows that linear
combinations of series B can approximate any series
which has only zeros after a certain step and thus any
series at all. By choosing z sufficiently small we can
make the norm of

{Z: N7 )i 0, ..

arbitrarily small too; thus states of the form (4. 32) can
approximate any coherent state and so by taking finite
linear combinations we can approximate all states in
the Hilbert space by states for which QV is defined.
That is to say, 2V is densely defined.

It is rather easy to see that also the Caneschi—-Schwim-
mer—Veneziano three-reggeon vertex? is defined on a
dense set in the following sense: There exists a dense
set of vectors |1) for which the “vertex operator”

201 (0IV(P ,P,,PJ) 1) [2)]0), (4.33)
mapping the space 2 into space 3 is densely defined, i.e.,
has a dense domain in Hilbert space 2.

We shall see that the domain in space 2 can be chosen
the same whatever the state |1) is as long as |1) belongs
to the dense set mentioned in space 1.

In fact we can, for the cyclically symmetric vertex
V(P,,Py,P3) = (0] (0lexp{—P,.c"+P,.a+P,.b

+ [ab). —[bc*). —[ctal } la)|B) |0), (4.34)
in which
2 anﬁm

[eBl. = ml?;::l MB(—fllm) ’

show that it is defined for the following coherent state,

n finite
la) =,{%P1 + rzzi C"‘Bir)}n=l.2,...7pl> (4. 35)

[a state of type (4.21)], where

1ZI{(1n |1 —=2Z]|(1, (4. 36)
and a state |b) that is either a finite occupation number
state or a coherent state with only finitely many modes

excited. We shall prove it explicitly for the latter case.

It is in fact rather easy to check that with such states
la) and |b) the vector (4.34) becomes of finite norm.
First it is noticed that both Iab) and |b) are eigenstates
of, respectively, ¢”2'* and ¢?3" with finite eigenvalues
because of, respectively, the exponential convergence

z" and the cutoff. Secondly

exp ([ab])la)|b)

= exp (convergent ¢ number)|a)|b), (4.37)
because of the cutoff in the excitations in |5) and the ex-
ponential decrease from |a). Thirdly, also in the factors
involving c* can the «'s and b's be replaced by ¢ numbers
and the overlap with the vacuum states ,(0| ,(0] just
results in a finite ¢ number too. So the whole expression
becomes a formal coherent state in space 3,i.e., for the
form

exp (% 'y” C(n)."> |0>c »

n=1

(4.38)
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and the only thing to be checked is that the norm is
finite, and that will be the case provided

o0
2 1val? (e (4.39)
The contribution to E::l yicW' from [bet]. is only dif-
ferent from zero for a finite number of y,,i.e.,n = N. It
is thus not able to spoil (4.39). The main trick is that
we have arranged it so that although both — [c*a] and
—p,-c" give contributions that violate (4.39) the sum
{0y ct—[cal}
gives a contribution that obeys restriction (4. 39). In fact
the term (z27/Vn)p 118 accurat%%tconstructed to provide
this cancellation; the terms 25, ° C,8 " give rise
through — [ca]. only to a contribution obeying (4. 39).
This completes the proof that the cyclically symmetric
vertex is densely defined.

5. THE PRODUCT D(q)V(p); PHYSICAL STATES

We have shown that the ground state vertex V(p) is in
general nonexistent in the Hilbert space. However, con~
sider the combination

D(g)V(p) = [ dx x"2V(p)

where

= [Ydx V(P 05", (5.1)
© a, p* < a,,p
V(p %) = exp (—g_:l J;. x’) exp(z,_:,l J“; x”). (5.2)

We can use the combination of operators in Eq. (5. 1), de~
fined by the integral expression containing V(p,x). The
rule should be that the integration is done after the in-
tegrand has operated. Consider this operator acting now
on a coherent state

.al x7 a,.xr
o B {5

-1 Vn

>, (5. 3)

where |p|2 =p3 +p2and |la,.pl=(a,opo + &,-P). The
last two exponentials are finite on a dense subset of C
(namely provided YJa,/Vr < «©).

Hence, on this dense set the norm is finite if g2 < —1 and
|pl2 < + 2 to avoid singularities at the lower and upper
end points, respectively. This redefinition of the product
D(g)V(p) is thus defined on a dense subset of € for these
momentum values.

%0 " 2Re|d”-P|
X exp (E (xlxz) <|0,,|2 - —‘_>

8
=]
B I:t

X exp (2pu A

]
)

The fact that the product of propagator times ground state
vertex is better defined than the vertex alone has some
interesting consequences on the definition of an off-mass
shell physical state, if we require that the off-shell state
remains normalizable within the Hilbert space. In
general a physical state defined by its coupling to N
ground state particles,

|®) = DV(k{)DV(ky)D---DV(ky_;)|0), (5. 4)
satisfies the gauge condition8
w_, |y =(Ly—L—7—1)[8) =0. (5.5)
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If we redefine a physical state without the final propaga-
tor, then it satisfies instead the conditions

|®'y = V(k)DV(ky)D- - -DV(ky_y)|0),

W.,1®") =(Ly—L—7v+7r—1)|&")=0.
In view of the nonexistence of V(p) as a Hilbert space
operator, we expect that the |¢') states defined by Eq.
(5. 6) be not normalizable, and it is amusing to confirm

this by constructing such states within the irreducible
representations of the gauge algebra.

(5. 6)

In Ref. 9, it is described how to analyze the spectrum of
states in terms of irreducible representations of the
Virasoro algebra, with generators L, v = 0,+ 1,+ 2,

= 3,.-.. For the present purpose we note that an exactly
similar analysis for spacelike momentum can be made
using irreducible representation of the Gliozzi algebral®
with generators L, L,;. Each irreducible representation
of the Gliozzi algebra then contains one and only one
state (that having lowest L, eigenvalue) which satisfies
L_,|®")=0. All other states, obtained by raising with
L, are the o states.

Within each representation of the Gliozzi algebra it is
straightforward to determine the unique state which is a
physical state according to the definitions (5. 5), (5. 6),
respectively (for » = 1). We may write for the former
case

|8) =§Oan(L1)ni@",c>, (5.7)
where "
Lyl@",¢c) =cl®"c), L_|®"¢c)=0.
Using the commutation relation
(L4, Ltl= 25/3: L{LLTT, (5.8)

one finds that the condition (5. 5) for » = 1 gives, putting
ao = 1,
a, = (1/n)[T(c + h — 1)I(2c)/I(c — DI(2¢ + n)].
(5.9)
18", eyl =1,
One then finds, always for spacelike momentum with
zero energy, that

0 n _ 2
@ley =%y (m {era=2%) (5.10)
70 \g=1 ¢(2¢ + ¢ — 1)
For large n the square bracket behaves as

" (ct+qg—22 e 1

-1 q2c+q—1) T n®
so that the state |®) has finite norm.

(5.11)

If we write, however,

) = 5 a, (L) le" c), (5.12)
n=0

satisfying (5. 6), then one finds

X1 T(c +n)I'(2c)

&Y =2 I(2¢ + n)T(c)

o (Ly*le”e),
n= !

(5.13)

and hence
o0 n _ 2
( ’ 7=0 <q:1 q(2c + ¢q—1)
» large (5.14)
P

S[H

giving a logarithmically divergent norm.
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We deduce that unless c is a negative integer, where-
upon the summations in Eqgs.(5.7) and (5. 12) may cut
off, all states satisfying Eq.(5.6) are nor normalizable.
The states satisfying Eq. (5. 5), on the other hand, can be
normalizable. Thus,the w_, condition for an offshell
physical state is more satisfactory in this respect than
the W, definition. This is as expected from the better
definition of D(q) V(p) in Eq.(5.1) than that of V(p) alone
of Eq. (4. 1).

6. SUMMARY AND DISCUSSION

We have studied the properties of the three fundamental
operators in the operator formalism: D(p), V(p, 9,03,
and (p). We have found that the vertex for ground state
emission V(p),is strictly speaking nonexistent within the
Hilbert space. The twisting operator (p) is also non-
existent when acting on any state with nonnull 4-momen-
tum; its Hermitian conjugate is, however, densely defined.
The propagator D(p) is everywhere defined off-mass
shell.

We have noted that the product £(q) V(p) and, more gene-
rally, the symmetric three~-reggeon vertex V(123) are
densely defined. Also,the product D(q)V(p) can be well
defined and this was related to the recognition that states
annihilated by w_, = (L, — L., — 1) were more suitable
candidates for off-shell physical states than states
annihilated by W, = (L, —L_, +7 —1).

The fact that not all operators and their image states can
be represented within the Hilbert space is not very sur-
prising because similar difficulties already occur in
nonrelativistic quantum mechanics, where for example,
the position operator acting on a square-integrable
wavefunction can give a new function outside of the Hil-
bert space spanned by the set of all square-integrable
functions.5 In that case, extension to a larger space has
proved useful.11

To conclude, we re-emphasize that the usual operator
factorization (with matrix elements taken) of the gene-
ralized Veneziano model is well defined; it is only when
we study the operators D, V, and f, in isolation, as Hil-
bert space operators, that the question of good defini-
tion arises. The matrix elements usually considered
are scattering amplitudes, and for these we know the
analytic structure and can continue analytically to any
kinematical region. If we isolate operators or operator
products, then there are no similar analyticity assump-
tions for these and, therefore, we have to understand
their mathematical properties in order to use them
correctly.
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Electromagnetic scattering from two circular, coaxial disks
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The electromagnetic field scattered from two perfectly conducting, circular, coaxial disks is calculated
when the incident field is a plane wave. Two quantities are of special interest: namely, the electric
field at the center of the axis of the two disks and the integral of the electric field along the axis
between the two disks. Analytical expressions for the low-frequency behavior of these two quantities
are derived in the case where the distance between the two disks is large compared to the radii of
the disks. For other frequencies and for separations of the two disks not too large these two
quantities of interest are calculated numerically. Expressions for the scattered far field are also

derived.

1. INTRODUCTION

One type of sensor for measuring the electric field is
the parallel plate dipole. This sensor consists of two
thin, perfectly conducting, parallel plates with some
suitable electrical device for picking up the electric field
or voltage between the two plates. In this paper we will
analyze the characteristics of a symmetrical, parallel
plate dipole consisting of two perfectly conducting cir-
cular disks and obtain quantitative information on the be-
havior of this dipole for a wide range of frequencies.

Electromagnetic scattering from one circular disk,
two or more coaxial disks, or an annular ring has been
treated by many investigators using a special integral
equation technique.'~® A somewhat different integral -
equation approach is discussed in Ref. 7. In all these re-
ferences the electromagnetic scattering problem is re-
duced to the solution of a Fredholm integral equation of
the second kind. The problem of acoustic scattering from
any number of equal circular holes arbitrarily distri-
buted in an infinitely large, rigid plate can be solved by
a method of expansion in hypergeometrical polynomials.®
An account of all methods available for solving the clas-
sical problem of acoustic and electromagnetic scattering
from one disk can be found in Ref, 9.

However, no quantitative results seem to exist, ex-
cept in some limiting cases, for the scattering from two
or more coaxial disks. In this paper we will use the
theory developed in Refs. 1—6 to obtain quantitative in-
formation about the scattered field for a wide range of
frequencies. The approach we use is general and can be
applied to the problem of scattering from any number of
coaxial disks having different radii.

To begin with, the two disks are assumed to have the
same radius, to be of zero thickness, and to be exposed
to an incident plane wave. Specifically, we will calculate
the electric field at the center of the dipole and the in-
tegral of the electric field between the two plates along
the axis of the dipole. Expressions for the scattered far
field are also derived.

In Sec. II we first scalarize the problem of two paral-
lel, coaxial disks of different radii by expressing the
scattered electromagnetic field in terms of the compo-
nents of the Hertz potentials. From the solutions of
these differential equations together with Green’s theo-
rem, some suitable transformation, and the edge condi-
tions, we formulate, in Secs. I and IV, pairs of simul~-
taneous Fredholm integral equations of the second kind.
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From a knowledge of the solution of these integral equa-
tions the scattered electromagnetic field can be calcu-
lated everywhere by performing simple integrations.

In Sec. V we express both the axial component of the
scattered electric field on the axis of the two disks and
the integral of this field along the axis between the two
plates in terms of single integrals which involve the sol-
ution of the integral equations formulated in Secs. III
and IV, These equations are solved iteratively for low
frequencies and for large separations between the disks.
These iterations are used to derive asymptotic expres-
sions for both the electric field at the center of the dipole
and the integral of the electric field along the axis be-
tween the two plates. For other frequencies and separa-
tions not too large compared with the disks’ radii these
two quantities are calculated numerically and graphed as
a function of frequency for different sizes of the sensor
and angles of the incident field.

Il. FORMULATION OF THE BOUNDARY CONDITIONS
IN TERMS OF THE HERTZ POTENTIALS

The electromagnetic boundary conditions on two per-
fectly conducting, circular, coaxial disks will be invoked
to derive and subsequently solve a set of ordinary dif-
ferential equations for certain components of the Hertz
potentials for the scattered field. The two disks taken to
be infinitely thin are separated by a distance 2d and their
radii are denoted by @, and a., respectively (see Fig. 1).
In cylindrical coordinates, the locations T, of the two
disks can be expressed mathematically in the following

y
RS
0 /’
] Z
X
d | N FIG. 1. The geom-
— - etry of the problem,
I
z
k g
E
X
H
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way: =,={(p,$,2):0sp<a, O0s¢ <27, z=1d}, We will
calculate the scattered field when the two disks are il-
luminated by a plane, monochromatic wave. The har-
monic-time dependence exp(—iw?) will be understood and
suppressed throughout the paper.

It is convenient to assume that the incident field can
be split into two separate fields: one with the magnetic
field parallel to the disks and the other with the electric
field parallel to the disks. The boundary-value problems
for these two different incident fields can be treated sep-
arately and the solution for an arbitrary incident field
may then be obtained by superposition. We will first
treat the case where the incident magnetic field is paral-
lel to the disks.

A. Incident magnetic field parallel to the disks
Let the incident field be a plane wave such that
Elrce—E}(% cosa +Z sina) exp(ikz cosa —ikx sina)

6y

Hire= E{Z 'y exp(ikz cosa —ikx sina)

where kE=w/c, c being the vacuum speed of light and Z,
the free-space wave impedance. The angle of incidence
a is defined in Fig. 1. The scattered field can be deter-
mined from the magnetic and electric Hertz potentials,
7tm and 7, as follows:

Erc=iwVXT™ + VX VUXTE),
Bec— vaxﬂ(m) _ikc-lv)(.”(e),

where 7™ and 1r7‘9" bbth satisfy the Helmholtz equation
Vir + B =0,

Let us now choose some suitable series representa~
tions for the components of the Hertz potentials, If these
representations satisfy all the required conditions, i.e.,
the Helmholtz equation, the boundary conditions on T,
the edge conditions at the boundary of =,, and the radia-
tion condition at infinity, then, in view of the uniqueness
of the solution of the electromagnetic scattering problem,
the assumed representations are justified. Assume that
the Hertz vectors for the scattered field can be repre-
sented in the following way:

n;'"’ =Eiw) 125 £, 1(p, 2)sinmo,
m=1

n;m:Ea(iw)-l‘Z? a(p, 2) coSm, (3)

m=1

mém = Egiw)™ 2 :,,,(p,Z)smm¢, 7© = Eglp, 2)z,

m=1

where £ and 7, satisfy the differential equation

92 19 m? 92 }
=+ +E =0 4
{W pow P B, @

and ¢ satisfies (4) with m =0,

To determine the Hertz potentials for the scattered
field on =,, we will use the boundary conditions on the
two disks,

E Einc +E’° 0 E Etnc +E’° 0 rez,. (5)

Expressing the incident field (1) in cylindrical coordi-
nates, making use of the expressions (2)—(4) for the
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scattered field, and invoking the boundary conditions (5),
we derive three ordinary uncoupled differential equations
for n,(p, 2z), &,(p,2) which are valid on Z,. A solution of

these differential equations is given by

nt(p) = 1,(p,+ d)=Bip™+ A% J (kpsina),

*(p)- (p,td)

=(m +1)Bt_ p™+ksina A?

m+l

J, (kpsina), (6)

0 .
'ész (p, + d) =B = Axd,(kp sina),

where 0 sp<a,, A =¢,i"™ k" cota exp(+ikdcosa), €,
=2, m=>1, and €= 1 Moreover, B? are unknown con-
stants of mtegratlon to be determmed later from the
edge conditions at p=a,, and J_(x) are Bessel functions
of the first kind.

Having derived the expression (6) for the Hertz poten-
tials of the scattered field when the incident magnetic
field is parallel to the disks, we now go on to derive a
corresponding expression when the incident electric field
is parallel to the disks.

B. Incident electric field parallel to the disks
Let the incident field be a plane wave such that
Eitc— E!'y exp(ikz cosa —ikx sina). (7)

In this case, the scattered field can be obtained from the

magnetic Hertz potential alone,
E°°=in><1r""’, B =YXV Xgim (8)

and 7™ can be expanded in the following Fourier series:

7™ = E§(iw)™ 20 Xppr (0, 2) cCOSMO,

m=1

7 =~ By (iw)? Elx,,..l(p, z)sinmo, (9)
m=

m — B (iw)™ 20 7,(p, 2) cosmo.
m=0

The boundary conditions (5) on =,, an expansion of the
incident field (7) in cylindrical coordinates, and the ex-
pansions (8)—(9) of the scattered field enable us to de-
rive the following expressions:

Ti(p)=7,(p,+ d)=D};p™ + C:dJ, (kpsina),
Br(p) =
where 0<p<a,, C:=¢ i"™(ksina)™? exp(+ikdcosa), and

D% are unknown constants to be determined later from
the edge conditions at p=a,.

(10)
"'(p,td) (m + 1D p™,

To sum up this section, the boundary conditions on the
disks combined with a suitable choice of the form of the
Hertz potential for the scattered field [(3) and (9)] have
enabled us to derive the expressions (6) and (10) for the
Hertz potentials on the disks. From these expressions
and the scattered field being continuous off the disks and
satisfying the Sommerfeld radiation condition, it is clear
that n,, 7,, 9¢,/0z, and 9x,/9z are continuous functions
of p and z everywhere (including =,).
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{11, REDUCTION OF THE SCATTERING PROBLEM TO
INTEGRAL EQUATIONS

In this section, we will reduce the electromagnetic
boundary -value problem of scattering from two circular
disks to the solution of Fredholm integral equations of
the second kind. In deriving these integral equations we
will make use of the boundary conditions derived in the
previous section for the Hertz potentials. Once the solu-
tion of these integral equations are found, the scattered
field can be obtained from a simple integration. We will
start with the derivation of integral equations for 7,(p, 2)
and 7_(p, 2), and then for £ (p,z), X,.(p,z), and ¥p, z).

A. Integral equations for n,, (p,z) and 1., (p,z)

By applying the Green’s theorem to the function
1,(p, 2) exp(im¢) in the region outside the disks and ob-
serving that this function is a continuous function of z on
%, and that it satisfies the radiation condition at infinity
we arrive, after some algebraic manipulations, at the
following integral expression:

NalP, 2)
=3 [ [ ow™J,(pp),(pp") exp(—w|z - d|)p’y* (0" )dp’dp

+3 o Jo " ow I (bp)T (pp") exp(=w|z +d|)

Xp'y™(p’)dp’dp, (11)
where w=(p? - E)'/2, p> P, and w=~i(K? - p>)'/2, p<k.
The path of integration in (11) is along the real axis in

the complex p plane and with a downward indentation at
p=Fk. Moreover, y.(y;) is the discontinuity at z=d

(z=—d) of am,/0z, i.e.,

. 0 0
yi(p)=1lim %ﬂ(p,d-f)-&(p,dﬁ) . (12)
€04 z 0z

Substituting into (11) the expression (6) for 7,(p, z) on
Z,, we arrive at the following set of coupled integral
equations of the first kind for y;(p):

S K, 07, 000"y (p")dp" + [ K (o, 0, 2d)p"y (0" )dp’
~mp), O<p<a,,
(13)
LK (0,0, 2d)p'y}(p")dp” + [K (p, 0", 000"y, (p")dp’
=n,{p), Osps<a,
where
K,(p,p",2)=1% )" pw™d,(pp)d,(pp’) exp(—w]|z|)dp
and the functions 7 (p) are defined by (6).

The kernel, K, (p,p’,0), in (13) has a logarithmic sin-~
gularity at p’=p. A general procedure for transforming
a certain class of one-dimensional integral equations
into a set of Fredholm integral equations of the second
kind has been developed in Ref. 4. An extension of this
method shows that we can obtain the solution of (13) from
the integral expression

2 d [o:
syl m1 8 2 _ 2\-1/2
O T

x coshl k(? = p?)* /2Jut=mY* (u) du (14)

provided that the functions ¥*(u) satisfy the following set
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of Fredholm integral equations of the second kind:

Vi (u) + [ L, )Yi(v)dv + [ M_(u,v)Y,(v)dv=F,(u),
O<u<a,

Yo (u) + fo“* M, (u, V)Y (v)dv + foa' L (u, )Y (v)dv=F_(u),
(15)

The kernels L, (u,v), M, (u,v) and the right-hand side
F%(u) in (15) are given tl)y the integral expressions \
L (u,v)=L(u, v;m,m - 3), M, (u,v)=M(u,v;m,m —3),
where

L(u, vym, v)= (uv)t /2 fo“’ w2 (B2 + wP)™ - w?m]J (wu)d, (wv)dw

Osus<a..

+i(uv)r/? ﬂf w2m(B? = w?)™ (wu)l (wv)dw,
(16)

Mu, vym, v) = (o) 12 [ pm 2 2m] (wu)J, (wv) exp(- 2wd)dp,
and
Fi(u)=2u" g;[u (2 = p?)72/2 cosh[ k(u? - p?)* /2]

0

X pmar (p)dp. (17)

Thus, the functions 7,(p, z) can readily be calculated
from the integral expressions (11) and (14) once we have
obtained the solution of (15). In this sense we have re-
duced the problem of finding 7,(p, z) to solving a Fred-
holm integral equation of the second kind. An alternative
form for the kernels in (15) is derived in Ref. 4.

We will now go on to show how the methods described
above can be used to determine 7_(p, 2). Let #(p) denote
the discontinuity of 37,/9z on =, fet. (12)]. A procedure
analagous to the one used to determine 7,(p, z) shows
that one can obtain #(p) from (14)—(17) by making the
following substitutions in those equations: ¥ (p)— 5 (0),
Yi(u)-~ T%(u), and 7i(p)— 7%(p), where 75 (p) is given by
(10). The functions 7,(p, z) can then be determined from
(11) by making the substitutions 7_(p, z)— 7,(p,2) and
Vulo)— £,(0).

Having derived two sets of Fredholm integral equa-
tions of the second kind for 7,(p, 2) and 7 ,(p, z) we will
now derive similar integral equations, the solutions of
which give £,(p, 2), X,(p,2), and ¥(p, 2).

B. Integral equations for §,,(p,2), xm (0,2}, and ¥{p,z)

In deriving integral equations for £ (p, 2), X0, 2),
and ¥(p, z) we first note that 8¢,/9z, 9x,/0z, and 99/92
are continuous functions for all values of z. Next, we let
x%(p) denote the discontinuity of £,(p,2) on Z,, i.e.,

xt(p)=lml&,(p,d—€) - £,(p,d +e).

€~0
From the Green’s theorem we can then derive the fol-
lowing set of differential —integral equations for xZ(p):

(18)

L [ K, (p, 0", 000’ %4(0")dp’ +L [, K 0,0, 2d)p"x, (0" )dp’

=-al(p), O<ps<a,
(19)

L [ K (p, 0", 2d)"x}(p"Ydp" + L [, K, (p, 0", 0)p"x,(p")dp’
= -—C(:n(p), 0 spsa,

where the differential operator / is given by / =d?/dp®
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+pd/dp ~m*p® + I and the functions K (p, p’,2) and
at(p) are defined by (13) and (7), respectively. A trans-
formation similar to the one used in transforming (13)
into the set of equations (14)—(15) enables us to trans-
form (19) into the following set of integral equations*:

2 (3
x(p)=- ?pm f * (2 = p?)~1 /2 cosh[ k(u? — p?)* /2]
P

Xy~ mX* (u)du,

where the functions X*(«) satisfy the set of Fredholm
integral equations of the second kind:

(20)

X (u) + foa* U, (u, )X, (v)dv + [ P, (u, v)X,(v)dv =G'{u),
Osus<a,

(21)
X (u) + fo“* P_(u, v)X% (v)dv + fo“' U, (u, V)X, (v)dv =G, (u),

O<us<a..

The kernels in (21) are given by the expressions, cf.
(16), Um(u) 'U) =L(u, vym,m + %) and Pm(u, ‘U) =M(u, v
m,m +3), and the right-hand side has the following in~
tegral representation:

u
G:w) =um % [ (42 = g2 12 coshlku® - p1 1%]g (p)dp,
du J, m
where
£5(p) = Bl 073 + 24%,, 0™, (kp sina). (22)

Similarly, to determine x,(p, z) we denote the disconti-
nuity of this function on =, by w*(p) [ef. (18)] and w? (o)
can be obtained from (20)—(21) by making the following
substitutions into those equations: x%(p)— w(p), X*(u)—
W (u), and gt(p)— hi(p), where h}(p)=D%,,p*™3. After
evaluating the expression (20) with the solution of (21)
the functions £,(p, z) and X,,(p, 2) (m = 0) can be calcu-
lated from (11) if we make the following substitutions in
(11): (3/22)n,(p, 2)—~ &,(p, 2), ¥:(p)— x%(p) and
(3/32)n,(p, 2)—~ X,(p, 2), ¥2:(p)— wt(p), respectively.

It now remains to determine ¥(p, z). To this end we
note that 9¢/8z is continuous on *, and we denote the dis-
continuity of ¥(p, z) on =, by z,(p) tcf. (18)]. The func-
tions z,(p) can be obtained from (20) by putting m =0 in

(20)—(22) and also substitute into those equations the
following expressions: x3(p)— z,{p), Xi(u)—~ Z,(u), and
gi(p)— Bip® - 2(ksina)tA%p?J, (kp sina). Thus, we have
reduced the problem of finding y(p, z) to the solution of
the integral equation (21). Tt should also be pointed out
here that for m =0 we have the following explicit repre-
sentations of the kernels and the right-hand side in (21):

Uy(u, v) =N, (u ~v) = Ny (u +v),

N, (1) = (imu)? sinh(ku),

Po(u, v) =Ny(u ~v) ~ Ny(u +v), (23)
N,(u) =7 exp(2ikd)[2d cosh(ku) + iu sinh(ku)]/ (u® + 4d?),
Gi(u) =2k B sinh(ku) - 2(k cosa) A% sinh(ku cosa).

We have now completed our derivation of Fredholm
integral equations of the second kind the solutions of
which give the Hertz potentials of the scattered field. As
we have seen in Sec. II, it still remains to determine
some unknown constants of integration. These constants
can be determined from the edge conditions, and in the
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next section we will formulate these conditions mathe-
matically in terms of constraints on the solution of the
integral equations (15) and (21).

IV. DETERMINATION OF THE UNKNOWN CONSTANTS
FROM THE EDGE CONDITIONS

The surface current densities i*(p, ¢) on %, can be de-
termined from the discontinuity of the tangential compo-
nent of the scattered magnetic field since the incident
electromagnetic field is continuous everywhere. In the
case where the incident magnetic field is parallel to the

disks, the expansions of i*(p, ¢) in a Fourier series,
l:(p’ d’) =Eoii,,,(9) cosm¢>, (24)

combined with Egs. (2), (3), (12), (14), and (20) give
it = (kE,/inZ,)/la,(a, - p)/2} 1°Z (a,) + Ol(a, - p)* /7],

it =(mEy/ivugra)/la,la, -p)/21 4 YV:(a,) - X2 (a,)]

+0l(a, =p)* /2], m=1, (25)
as p— a,. Thus, the edge conditions demand that
Z(a,)=0, Y(a)=X%_(a), m=>1, (26)

and from (26) we can determine the constants of integra-
tion B, m >0, in (6).

Similarly, in the case where the incident field is par-
allel to the disks, the edge conditions imply that

Ti(a)=W: \(a), m>1, (217)

Again, (27) gives us the relationship that is needed to
determine the constants D%, m >0, in (10). We wish to
point out in passing that the edge condition for z’;(p, ¢) is
automatically satisfied by the conditions (26) and (27).

We have now concluded the reduction of the boundary -
value problem of electromagnetic scattering from two
circular, coaxial disks to the mathematical problem of
solving two sets of Fredholm integral equations of the
second kind, In the next section we will use the solution
of these integral equations to calculate the fields along
the axis of the two disks.

V. THE ELECTRIC FIELD ON THE AXIS OF THE DISKS

The electric field on the axis of the two disks is given
by, cf. (1)_(3)9

E (2)=Ein(z) + Ejelz), ele)= -8-2; 90, 2) + (0, 2), (28)
where
Wp, 2)=¢*(p, 2) + ¥ (p, 2)

and

o, 2)=5s f Glo, ', &, 2% dp'z (p)dp'dd.  (29)

Some manipulations on (29) together with the Sonine’s
second integral®® give

Y*(p, 2) = (2m)  sgn(z d - 2)

X [+[L*(p, 2, d,u) = L*(p, 2, d, = )12 (w)du, (30)
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where
L¥(p, z, d, u) =expliklp® + (| z ¥ d| - iu)?}/7}
x[p? +(|z¥d| -iupl/?,

sgn(x) =1(-1) for x>0 (< 0), and the real part of the
square root is positive. From the integral equation (21)
it is easy to see that Z,(u) = O(u) as u— 0, so that the in-
tegral in (30) exists for all values of p and z. We also
note that the expression (30) satisfies the ¢ -independent
wave equation off the disks. The electric field on the
axis of the disks can be obtained by differentiating (30).
In order to obtain expressions more suitable for numer-
ical calculations, we proceed as follows: suppose Z/(u)
and Z!’(u) are differentiable twice. Integrating (30) by
parts and keeping in mind that Z,(a,)=Z,(0)=0, we get

gi;g- (p,2)=(2mi) sgn(z d - 2)
x[L¥(p, 2, d, a,) - L*(p, 2, d, — a,)1Z!(a,)
-(2m)tsgn(+d - 2)
X j;“*[L*(p, z,d,u) = L*(p, z, d, ~u))Z!"(u)du,
(31)
where the prime denotes differentiation with respect to

u. The functions Z/(u) and Z!’(u) satisfy the integral
equations

Z:(u) + [ [Ny (u = v) + Ny(u + )12 (v)dv

+ fo"' [N, (1 = v) + N(u + )1 Z2(v)dv = G} (u),
Osus<g, (32)

Z!u) + j;“‘ [N, (u = v) + Ny(u + v)1Z 1 (v)dv

+ j;,“‘ [N, (u = v) + Ny (u + v)12(v)dv = G3'(w),
O<su<a,
and
Z () + [+ [Ny - 0) = Ny(u+2))2] (v)dv

+ Jo Vo = 0) = Ny(u + )22 (v)dv = @ (u),
O<su<a, (33)

Z2(w) + [ 7 [Ny(u = v) = Ny(u + )12 (v)dv
+ [0 [Ny = v) = Ny(u+ )22 (v)dv = Q(w),

O<us<a,

where

Q*(w) =Gy (w) + [Ny (u + a,) = N, (u - a,)1Z!(a,)
+ [Ny + a;) = Ny(u - a,)1Z4(a;)

and N,(u), N,(u), and Gi(u) are defined by (23). We note
that the only difference between the set of integral equa~
tions for Z,(«) and that for Z’(«) is in the right-hand
side.

The scattered electric field on the axis of the disks
can be cast into the following form for ~d<z<d,
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1610

e(z) =" explik(d - 2)] S5 N (e, WRZ, (1) = Z!"(u)]du
+m explik(d - 2)IN*(2, a,)Z(a,)
-1 explik(d +2)] [~ N(z, )l #°Z_(u) = 2! () Jdu

~7texplik(d+2)IN"(z, a.)Z'(a)), (34)
where
N#(z, u) =[u cosh(ku) +i(z + d) sinh(ku)]/[u® + (z 7 d)?].
Another quantity of interest is v(d), given by
v(d) = E;! f_: E (2)dz

=2k tana sin(kdsina) +[2/(0) - 27(0)]/2
= [ [N,) + N,(w))Z () du
+ [ [Ny () + N, )22 ()

+@m) 'R [ K(u)Z, (w)du

= (2mi) 'R [ K(u)Z (w)du, (35)
where
K(u) =E, (ku - 2ikd) — E,(ku) + E, (- ku - i0)

~E, (= ku = 2ikd)

and E,(¢) is the exponential integral.'! Equations (34)
and (35) are suitable for numerical treatment,

We will now discuss the solutions of the integral equa-
tions for Z,(u), Z.(u), and Z!'(u). The kernels of these
integral equations are small when the normalized wave-
number of the incident wave is small and the distance
between the two plates is sufficiently large, i.e., when
B=Pka<« 1 and 71(=kd) is of order unity. In this case an
iterative solution of the integral equations can be obtain-
ed. For the special but important case where ¢,=a_=a
this iterative solution gives

E (0) = Egsina + 2 sin2a sin(7 cosa)
X et"B(n* +in® — 17 — 2)/ (4577F) ] + O(B")
(36)
v(d)=dn* sin(2a) sin(7 cosa)
x[cos™2a - B2/6 + B*(11 + 6 cos2a)/360] + O(p°).

For other frequencies and when the separation between
the two plates is not large the integral equations can not
be solved analytically. In this case we solved the inte-
gral equations for Z,(u), Z!(u), and Z’(x) numerically
for a,=a =a, 0<ka<10, d/a=0,1, 0,05, 0,02, and
a=18° 36°, 54°, 72°, From these numerical solutions
we then, by simple integrations, calculated e(0) and v(d)
from (34) and (35). The results of these calculations are
shown in Figs. 2 and 3. In these figures we have used
the normalized quantities e’ =1 + ¢(0)/siné and v’ = v(d)/
(2dsina). Figure 2 shows e’ as a function of ka with d/a
as a parameter for different values of a. It was found
that the curves for v’ are very similar to those for e’.
Therefore, the difference quantity e’ - v’ is plotted in
Fig. 3as a function of ka with d/a=0.1, 0,05, For
d/a=0,02 the difference between e’ and v’ is negligible,
and hence the corresponding curves are omitted in the
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FIG. 2. The normalized electric field at the center of the two disks.

figures. It was found numerically that for ka<1 we have
le’| =1 =Ek2a? cos®a/6. To conclude this section, we wish
to point out that e’ =v’=1 for @ =90°, and E(0,2)=0
for a =0°, as expected.

VI. THE SCATTERED FAR FIELD

In this section we will express the scattered far field
and the total scattered power in terms of the solutions
of the integral equations (15) and (21). To this end we
will first find a far-field expression for the scattered
Hertz potentials and then use these expressions to find
the scattered electric and magnetic far fields. We will
first treat the case where the incident magnetic field is
parallel to the disks. The case where the incident elec-
tric field is parallel to the disks is then treated in an
analogous manner,

From the Green’s theorem we can derive the following
far -field representation of 7% (p, z),

7t (7 siné, 7 cos6) ~ (4mr)™ exp(ikr) exp(¥ ikd cosf)
X [ p'd ko’ sinb)y: (0")dp’, (37)
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where (7, 6, ¢) are the spherical coordinates (see Fig. 1),
Substituting the expression (14) for y(p) into (37) and
using the Sonine formula, we get, after some algebraic
manipulations,

_ 1 expliky)

where
Q:(6, k)= (47)" V2 cosP exp(Fikd cosb)tan™d
X [51, 1 (R cosO) Y5 (u)du. (39)

Similarly, one can derive the following far-field
expressions:

g~ 53 SR (g ), e ZE SR g 1y (40)

Jr T kr 0m VT ok
where
R:(6, k) =(47)" V2 cosf exp(+ ikd cosb)tan™d

X [ 41,y o(ku cosO)X;, (u)du (41)

and S*(6, k) is obtained from (41) by making the substitu-
tions m =0, Z,— X%, and S*— R? in this equation.
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FIG. 3. The difference quantity le’ —v’|.

The scattered electromagnetic field can now be ob-
tained from (2), (3), (38), and (39):

E;c~E69-x%:iQZ)1[R;"_1(9, k) cosme +iksin6S’(6, k)],
m=

e .kr 00
B~y %@F_)El[cosm;n.l(e, #)

(42)
-i8in6Q’ (6, k)] sinme,
H,=-Z3E,, H,=Z3E,,
where R/ =R’ +R; and, similarly, for @, and S’.
The total scattered power P’ is given by

Pr=Z3} [(|E,|?+|E,|*)7*sinb d6dd
=EpZ3 f_;[zkzsin29|s'[2+i(13;n_1|2
m=1

+ |cos6R,, , +isinfQ;,|?)]sinb d6. (43)

Similarly, when the incident electric field is parallel
to the disks we obtain the following expressions:

Ege~ -Eé'e%(%kL)EIanh(e, k)sinma,
m=
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exp(ikr) <
Esc~ « Epr =225 [cosOR! " (6, k
¢ 0 1"\/7 m=1 m-l( ’ )
-isin6Q"'(8, k)] cosme, (44)

P =Ey*Z3 f_:f, [|Rz, |2+ |cos6R:.,
m=1

-isin6Q!’|?]sinb dé,

where Q!/ and R/ have been obtained from (39) and (41)
by making the following substitutions in those formulas:
Y2 (u)— T*(u) and X*(u)— W= (u).

Before concluding this section it is worth pointing out
that the total scattered power can also be obtained by
integrating the real part of the Poynting vector over the
surface of the disks. This method leads to a different
representation of the total scattered power.”

VIl. CONCLUDING REMARKS

The problem of electromagnetic scattering from two
perfectly conducting, coaxial, circular disks can be re-
duced to the solution of a set of Fredholm integral equa~
tions of the second kind. Once the solutions of these
equations have been determined, any field quantity can
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be obtained by performing simple integrations on these
solutions. The frequency variation of the field along the
axis of the two plates has been obtained by solving the
integral equations numerically for different values of
radius -to-wavelength ratio as well as separation-to-
radius ratio of two equal, coaxial disks.

Using the principle of analytic continuation we observe
that the kernels of the integral equations (15) and (21)
are entire functions of the complex frequency variable
s. Moreover, the kernels are finite for d#0 and, hence,
the solutions of these integral equations are meromor-
phic functions of s. This result is, of course, in agree-
ment with the results reported previously'? concerning
the analytical properties of the field scattered from a
perfectly conducting, finite body.

It should also be pointed out that the integral equations
determining electrostatic scattering from two perfectly
conducting, circular, coaxial disks can be obtained by
taking the limit as the radius-to-wavelength ratio tends
to zero of the dynamic integral equations (15) and (21).
The integral equations thus obtained resemble those ob~
tained by Love!? when calculating the electrostatic poten-
tial of two equal, circular, coaxial, conducting disks
equally or oppositely charged.
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